Kuidas mõista andmestunud maailma

Tekst
Loe katkendit
Märgi loetuks
Kuidas lugeda raamatut pärast ostmist
  • Lugemine ainult LitRes “Loe!”
Šrift:Väiksem АаSuurem Aa

1.1.3. Andmepõhise muutuste juhtimise põhimõtted

Andmete põhjal muutuste juhtimine on teinud läbi mitmed nihked. Järgnevalt leiavad käsitlemist kolm peamist andmepõhise muutuste juhtimise põhimõtet, mida siinse peatüki autorid nimetavad normatiivseks mobiliseerivaks, normatiivseks struktuurseks ja kaasavaks muutuseks.

1.1.3.1. NORMATIIVNE MOBILISEERIV MUUTUS

Üks tavapärasemaid olukordi on, et muutusi tuleb teha piiratud „mängumaal“ ehk olukorras, kus muutuse sisu või probleemi lahendus on juba teada ning organisatsiooni eestvedajate eesmärk on lahendust võimalikult hästi rakendada, inimesi eeskätt sõna jõul veendes ja motiveerides, kuid ilma institutsionaalsete ümberkorraldusteta, st organisatsiooni struktuur ja toimimise regulatsioonid jäävad samaks. Näiteks saab organisatsiooni sees inimesi mobiliseerida koolituste, konkursside ja parimate töötajate tunnustamise abil. Välistele sihtrühmadele suunatakse instrueerivad kampaaniad, kus soovitatakse mingit kindlat käitumisviisi soovitud mõju saavutamiseks (nt 60 minutit liikumist päevas aitab vältida rasvumist ja südame-veresoonkonnahaigusi). Andmeanalüüsi kaudu on sellises olukorras võimalik juhti ja teisi muutuse eestvedajaid toetada, tuues välja seosed tegevusi iseloomustavate andmete vahel ja luues mudeleid rakendusstsenaariumideks, näiteks kiiremaks ja aeglasemaks muutuseks (nt milline mõju on tervisele, kui liikuda 60 minutit päevas mõõduka aktiivsusega, võrreldes 30 minuti suure aktiivsusega liikumisega).

Analüüsid näitavad, et keskmiselt kolmandik organisatsioonilistest muutustest on edukad (Smith 2002; Beer, Nohria 2000). Kui näiteks uue tegevusstrateegia rakendamine organisatsioonis osutub 58% juhtudest edukaks, siis katsed organisatsioonikultuuri muuta on sama analüüsimetoodika järgi edukad vaid 19% juhtudest (Smith 2002). Seejuures määrab andmete töötlemise korraldus sageli muutuste edukuse hindamise (Heckmann et al. 2016). Peatüki autoritena väidame, et andmeanalüüsi võimaluste avardumise tõttu on organisatsiooniliste muutuste juhtimisel toimumas paradigmanihe: kuna tehniliselt on võimalik seirata, millised on töötajate toimimisviisid, siis ei käsitleta organisatsioonilist muutust enam juhtkonna kui initsiaatori strateegilise osavusena oma tahet läbi viia. Tähelepanu fookus on hoopis organisatsiooni liikmetel kui muutuse vastuvõtjatel. Muutuse kriteeriumiks ei ole sealjuures juhtkonna visioon ega tegevusmõõdikud, vaid pikaajaline muutus sünnib alles siis, kui inimesed oma töökäitumist muudavad (Choi 2011; Armenakis, Harris 2009; Jones et al. 2005, Balogun, Johnson 2005; Bartunek et al. 2006; Bouckenooghe 2010; Kirsch et al. 2014; Parry 2015). Juhtimistarkus on seega väga tihedasti seotud andmeanalüütiku tarkusega leida andmetest info töötajate hoiakute ja konkreetse tegevuse kohta, selleks et planeerida nutikat sekkumist.

Andmeanalüütikud sotsialiseerivad juhte, et need andmetest saadud infot arvesse võtaksid. Aga ka vastupidi – targad juhid n-ö sotsialiseerivad andmeanalüütikuid, selgitades neile probleemi või vajaduse „ajalugu“ ja laiemat konteksti. Samas on ka piir juhtimise ja andmeanalüütika vahel hägustunud: targad juhid on ka ise muutunud andmeanalüütikuteks, selekteerides ja tõlgendades olemasolevate andmete seast olulisemat. See tegevus ei saa olla vabatahtlik, vaid peaks olema määratletud olulise tööülesandena, mille eest ka tasu makstakse. Organisatsiooni kontekstuaalseid vajadusi peaks arvestama ka eri metoodikate ja vahendite kasutuselevõtul. Näiteks soovitavad uurijad kasutada rohkem analüütilisi töölaudu ja näidikute paneele (analytic dashboard), mis võimaldavad võrrelda võtmeindikaatoreid muutujatega, luua prognoose ja neid visualiseerida. Tuleb ette ka olukordi, mil ei ole tingimata tarvidust pidevat reaalaja seireinfot saada, selle asemel tegeletakse pikemate aegridade ja seoste analüüsimisega, tuginedes kogutud koondandmetele (Pugna et al. 2018). Ettevõtetele pakutakse andmeanalüüsil põhinevaid metoodikaid muutuste rakendumise jälgimiseks (nt Comuzzi, Parhizkar 2017). Andmepõhise otsusetoe loomisel on võimalik ka minevikuandmete „kaalumine“, st erineval ajalisel kaugusel olevaid andmeid ei peeta otsuste langetamisel samavõrra kaalukaiks (Grechuk, Zabarankin 2018).

Andmepõhised mudelid aitavad soovmõtlemist ja ka kammitsevaid hirme leevendada. Oluline on siinkohal aga mitte suruda andmeanalüütikut Delfi oraakli rolli, vaid mõista, et lisaks analüüsitud andmetele mõjutavad protsesse veel paljud tegurid, mida järgnevalt detailsemalt käsitleme.

1.1.3.2. NORMATIIVNE STRUKTUURNE MUUTUS

See on teine küllaltki sageli ettetulev muutuse strateegia, kui poliitilist või ekspertide väljatöötatud lahendust hakatakse reeglite muutmise, struktuursete ümberkorralduste (ühendamine, alluvussuhete muutus, rollide ümberjagamine), rahastuse muutmise, uute tehnoloogiate kasutuselevõtu või muude selgete mõjutusmehhanismide kaudu rakendama. Lahenduse töölehakkamine oodatud viisil võib sõltuda kriitilisel määral sellest, kuidas seda rakendatakse. Kujundlikult öeldes: saatan peitub detailides. Andmeanalüüsi abil on sellises olukorras võimalik eeskätt näidata ümberkorralduse võimalikku mõju enne selle rakendamist. Selleks et andmeanalüütik oskaks välja pakkuda tegevusi ja olukordi iseloomustavaid, omavahel seotud mõju näitajaid, peaks ta olema kaasatud rakendusplaani väljatöötamisse juba enne selle sündi. Oluline on, et muutuste juhid esitaks mõjude kohta lisaks tavapärasele tulu-kulu vahekorrale ka teisi küsimusi. Kas meetmete oodatav mõju on tugev või nõrk? Kas mõju kumuleerub aja jooksul? Kas võib oodata, et tekib sünergia muude protsessidega? Millised on ümberkorralduste kavatsemata kõrvalmõjud? Võrdlevad mudelid, rajasõltuvuste väljatoomine ja muud analüüsid aitavad kavatsemata negatiivseid kõrvalmõjusid vältida või leevendada.

Enne regulatiivseid ja struktuurseid muutusi on kasulik kasutada mitte üksnes ennustavat (forecasting) andmeanalüüsi, vaid tuletava tulevikuloome (back-casting) metoodikaid (Robinson 1990; Bibri 2018; Holmberg, Robèrt 2000). Tuletava tulevikuloome eesmärk ei ole mitte teha võimalikult täpseid ennustusi, vaid lähtudes kõige positiivsemast realistlikust tulevikustsenaariumist püstitada järkjärgulisi arengueesmärke, tulles tulevikust tagasi tänasesse päeva. See võimaldab tegevusi planeerida nii, et tulevikuarengut oleks võimalik maksimaalselt mõjutada. Inimestel on pikaajalist muutust ette kujutada keeruline, sest lühiajalist arengut kiputakse ületähtsustama ning soovid ja hirmud mõjutavad paratamatult olukorratunnetust. Seega võib andmepõhine tulevikuanalüüs strateegilist planeerimist tõepoolest hõlbustada. Andmepõhise muutuste juhtimise üks kiiresti kasvav valdkond ongi tulevikule suunatud tehnoloogiline analüüs (future-oriented technology analysis, vt nt Cagnin et al. 2013), mis koondab tulevikuloome (foresight) ja prognooside (forecast) uurijad ning tehnoloogiauurijad ühise eesmärgi – tuleviku arengusuundumuste mõjutamise ja just pika perspektiiviga, järgmiste põlvkondade elu mõjutavate põhimõtete kujundamise nimel.

Organisatsiooniliste muutuste juhtimist hakkab tuntavalt mõjutama ka see, kuivõrd ollakse n-ö andmekohuslased. Näiteks on Suurbritannia ülikoolidel laialdased kohustused toota andmeid avalikesse andmebaasidesse, kust potentsiaalsed tudengid ja teised huvitatud saavad neid kasutajasõbralike liideste abil „kaevandada“ (Browne, Rayner 2015). See on põhjustanud nurinat, et ülikoole ei juhita enam „kohalt“, vaid ülikooli kontrollivad riiklikud õigusaktid, väline arvepidamine ja suuremahuline organisatsiooni loodud andmete kaevandamine ja kasutamine andmepõhises või andmetargas juhtimises.

Teisalt leitakse aga, et kohalikud ja rahvusvahelised avaandmete kogud võimaldavad mõjumehhanismide kaudu luua nii majanduslikku kui ka sotsiaalset kasu: läbipaistvuse mehhanismid võimaldavad vähendada info ebavõrdsest kättesaadavusest tulenevaid takistusi ja ressursside jaotumist; osalemismehhanismide kaudu on võimalik koondada indiviidide tahet, ideid jt ressursse avaliku poliitika kujundamisse; tõhususmehhanismid võimaldavad avalike teenuste kvaliteeti ja tasuvust parandada, võimaldades näiteks kodanikel ise oma andmeid hallata või andmeid taaskasutusse suunata kohtades, kus neile võib tekkida lisandväärtus; innovatsioonimehhanismide kaudu on võimalik luua uusi avalikke teenuseid, meetodeid ja praktikaid (Jetzek et al. 2014).

Kogu (avatud) andmebaasidega seonduva mõjude hindamise ja sellega seotud planeerimisvõimekuse arendamine on alles kujunemisjärgus ja kindlasti vastuoluline protsess (vt ka ptk 1.3). Oluline on, et säiliks nii kriitiline analüüs kui ka katsetamisjulgus. Hirmuga segatud kärsitus ei ole andmete kasutajale parim nõuandja, olgu ta juht, andmeanalüütik või valmisrakenduse tarbija. Normatiivse muutuse protsessi on kasulik põimida kaasava muutuse juhtimise elemente.

1.1.3.3. AVATUD JA MOBILISEERIV MUUTUS

Kolmas muutuse strateegia – avatud ja mobiliseeriv ehk kaasav muutus – on selline, kus probleemi lahendust asutakse alles asjaga seotud osapoolte ja/või ekspertidega ühiselt välja töötama, st osapooltel on võimalik rohkem mõjutada ka seda, milliseid muutusi probleemi lahendamise või vajaduse rahuldamise eesmärgil tegema hakatakse. Andmeanalüütikud saavad luua eri osapoolte vahel jagatud infovälja, eriti juhul, kui lahendust otsib mitu organisatsiooni vm osapoolt üheskoos. Selleks on vajalik andmeanalüütikute omavaheline infovahetus ja koosloome ning seda toetav töökorraldus aitab muuta koostöövõrgustike ja kollektiivsete otsustuskogude tegevust teadmispõhisemaks. Näiteks saaks andmeid tuua ekspertide küsitlusse Delfi meetodil,12 mille eesmärk on saavutada probleemide lahendamisel ühismeel. Kui Delfi meetodil tehtavates küsitlustes on seni olnud kasutusel ekspertide vastused nende kogemuste ja teadmiste põhjal, siis võimalik oleks Delfi küsitluse programmi lisada ka andmepõhiseid aegridu ja prognoosimudeleid. Eriti tõhusalt saavad protsesse kujundada andmeanalüütikud, kes suudavad andmete tähendust tavakeeles osapooltele selgitada ning luua andmepõhiseid simulatsioone, mis aitavad valikuid kaaluda (vt ka lugude jutustamisest andmete põhjal, ptk 4.2). Andmeanalüüs saab olla suurtes organisatsioonides ka n-ö sisemine teenus, mille hea kättesaadavus ja selge korraldus on organisatsiooni innovatsioonivõimekuse seisukohalt väga oluline.

 

Kaasava muutuse üks olulisi vorme on uue toote või teenuse disainimine. Andmeanalüüsi põhjal on võimalik täpsustada sihtrühmade vajadusi ja prognoosida toote/teenuse vastuvõttu. See meetod ei eelda sugugi sihtrühmade suurt infotehnolooglist haritust. Vastupidi, uuringud näitavad, et andmepõhine teenusedisain on väga hästi toiminud infotehnoloogiliselt vähearenenud kohtades. Näiteks kohandati Ameerika põlisrahvaste hõimude laste heaolu eest hoolitsevates organisatsioonides infosüsteemi vastavalt hõimu vajadustele ja organisatsiooni töötajate oskustele, muutes kogu andmete kogumise ja esitamise protsessi kasutajate vajadustest lähtuvaks (Scannapieco, Iannone 2014). Infosüsteeme disainitakse kasutajasõbralikumaks, ühildades tavapäraseid küsitlusmeetodeid arvutite genereeritud kasutajainfoga. Andmemeeskondades töötamist kasutatakse kõrgkoolide õpiprotsessis (Bolhuis et al. 2016). Meditsiinis on kasutatud praktikutelt kogutud andmete põhiseid kogemusi, et hõlbustada uutele ravijuhtumitele lahenduste leidmist (Fox et al. 2015). Algoritme kasutatakse näiteks selleks, et ennustada süsteemi disaini võimalikku mõju (info)süsteemi kasutajatele meeldivamaks muutmisel (Bonhomme et al. 2018). Andmeteadus võib olla nii vahend, mille abil tehakse teenuseid kasutajasõbralikumaks, kui ise n-ö kasusaaja, mille arendamisel rakendatakse inimlikke teenusedisaini meetodeid. Näiteks on teenusedisaini kasutatud selleks, et leida viisid, kuidas rakendada andmeteaduse eetika põhimõtteid konkreetsete andmeuuringute eetiliste küsimuste üle otsustamisel ja vastava otsusetoe loomisel (Drew 2018).

Kokkuvõtteks võib öelda, et tehnoloogiliste võimaluste targas ärakasutamises on „pall juhtide väravas“. Juhtide ülesanne on vältida tehnoloogia diktatuuri oma organisatsioonis, analüüsides kavandatava muutuse olemust, kombineerides muutuse juhtimise strateegiaid, kaasates organisatsiooni liikmeid ja sihtrühmi ning suunates ja võimaldades andmeanalüütikutele „suure pildi“ nägemist. Juhtide oluline roll väljendub siin nii andmepõhiste muutuste elluviimisel avalikus, era- või kolmanda sektori organisatsioonis kui ka laiemalt poliitikakujunduses.

1.1.4. Andmeanalüütiku roll poliitikakujunduses

Üks olulisemaid kohti, kus tekib küsimus andmete kogumisest ja kasutamisest, on riik ja selle toimimine. Peamiseks küsimuseks on, kuidas lahendada ühiskondlikke probleeme ning saavutada soovitud muutusi, olgu siis tegemist kas tööpuuduse vähendamise, iibe tõusu, keskkonnareostuse ennetamise või ühistranspordivõrgustiku optimeerimisega. Teadmispõhine poliitikakujundamine sai avaliku halduse ja poliitikate kujundamise reformide trendiks Euroopas ja Anglo-Ameerika riikides juba 1960. aastatel, kui hakati rõhutama strateegilist planeerimist, kulu-tulu analüüse ning teaduslikku ja ekspertteadmisel põhinevat otsustamist (Pollitt, Bouckaert 2017: 11). Nüüdseks on see trend muutunud arenenud riikides valdavaks seoses andmeanalüüsi meetodite ja tehniliste võimaluste, sh avaandmete ja uutest allikatest pärit andmete arenguga (vt ka raamatu sissejuhatus). Andmeanalüüs on muutunud riigiasutuste toimimise igapäevaseks osaks. See on märgatav pidevas andmete kogumises, seires, aruandluses ja analüüsis, mis informeerib mitte ainult asutuse juhtimist ja muutuste kujundamist ühe valdkonna piires, vaid laiemalt kõiki riigi poolt vastu võetavaid otsuseid. Lisaks sellele on andmete kogumine institutsionaliseeritud, st need protsessid väljenduvad ka asutuse struktuuris ja funktsioonides. Seega on riigi ja riigiasutuste võime neid funktsioone täita võtmetähtsusega (vt nt Wu et al. 2018).

Ükskõik, millisel kujul andmeid kogutakse ja kasutatakse, on riigi ja kohaliku omavalitsuse perspektiivist eesmärk sama: andmepõhine otsustamine võimaldab vähendada ebakindlust, mis tulevikku suunavate otsuste tegemisega kaasneb. Vaadates paralleelselt avaliku halduse teooria ja praktika arengut 20. sajandil (vt nt Pollitt, Bouckaert 2017; Lynn 2012), on peamine rõhuasetus olnud just ekspertiisi suurendamisel ning sellistel väärtustel nagu tõhusus (efficiency) ja mõjusus (effectiveness) (eesmärkidena) ning erapooletus ja neutraalsus (ametnike iseloomujoontena) avalike teenuste pakkumisel erasektori poolt, võrdlevanalüüsil (benchmarking) ja strateegilisel planeerimisel. Selline fookus peidab aga endas ohtu: keskendudes tõhususele ja mõjususele ning arvulistele indikaatoritele, ei pane avalikud teenistujad enam tähele eetika- ja moraaliküsimusi; nad muutuvad moraali aspektist kurttummadeks (Menzel 1999).

Viimase kümnendi suurimad skandaalid on juhtinud tähelepanu selle probleemi tekkimisele ka andmekorjes ja -kasutuses. 2013. aastal avalikustas Edward Snowden USA Riikliku Julgeolekuagentuuri ning mitme telekomifirma ja Euroopa riigi koostöö, mille keskmes oli julgeoleku eesmärgil eraisikutelt andmete kogumine. Facebooki kaudu kogutavad andmed olid 2016. aastal suurepäraseks andmeallikaks Cambridge Analyticale USA presidendivalimiste ja Ühendkuningriigi Brexiti-referendumi kontekstis (vt täpsemalt ptk 1.4). Need kaks skandaali tõid kaasa diskussioonid andmeanalüütiku rolli üle poliitikakujundamises, aga ka elavnenud huvi mitme kaasneva teema üle (nt privaatsus ja selle riive, kontroll andmete kasutamise üle, teadlik nõusolek, millistel eesmärkidel (riigikaitse, julgeolek) võib tavapäraselt kehtivaid reegleid rikkuda, vabade valimiste ohustatus). Nende skandaalide sisuks olnud tegevused on just nimelt tuginenud tõhususele ja mõjususele kui väärtuskriteeriumitele. Esimene muutis riigi julgeoleku eesmärgiks, mille nimel kogutakse andmeid, ennetamaks võimalikke rünnakuid, kuid riivas samal ajal eraisikute privaatsust. Teine aga muutis andmed kaubaks, mille abil manipuleeriti inimeste infovälja ja seeläbi demokraatlikku protsessi.

Lühidalt: andmed võimaldavad (riigil) teha mõjusamaid ja tõhusamaid otsuseid, kuid samas ei tohi ära unustada muid väärtusi ja hindamiskriteeriume. Poliitikakujundamises on küll eesmärk luua fakte kogutud andmete põhjal, kuid paratamatult tulevad mängu mitmed sotsiaalsed, poliitilised ja eetilised väärtused (vt nt May 2011; Bryman 2015; Creswell, Creswell 2018), sealhulgas esitatakse niisuguseid küsimusi nagu kes uuringut rahastas ja miks, kuidas ja kes uuringu korraldas, millised on valitud metoodika tugevused ja nõrkused jne. Varasemad uuringud (ibid.) on välja toonud kuus kriitilist etappi uuringute kavandamisel, mis võivad kaasa tuua olulisi eetilisi või väärtushinnangutele toetuvaid valikuid (vt tekstikast 1.1.1).

TEKSTIKAST 1.1.1. PEAMISED VÕIMALIKUD VÄÄRTUSHINNANGUTE KONFLIKTID (MUUDETULT MAY 2011; BRYMAN 2015; CRESSWELL, CRESSWELL 2018)

1. Uuringut mõjutavad huvid (huvide konflikt)

2. Uuringu eesmärgid ja uurimisdisain

3. Andmete kogumise meetodid ja protsess

4. Andmeanalüüsi meetodid ja andmete tõlgendamine

5. Andmete säilitamine ja jagamine

6. Uuringutulemuste kasutamine (või kasutamata jätmine)

Esimene etapp, kus mängu tulevad sotsiaalsed, poliitilised ja eetilised väärtused, puudutab uuringu tellimiseni viinud huve ja uuringu rahastamist (May 2011). Rahastaja tellitud tulemuste ja järeldustega uuringud on üks huvitavamaid eetilisi dilemmasid nii uurija rolli kui ka uuringu usaldatavuse aspektist. Võimalik huvide konflikt, kus vastanduvad professionaalsed, isiklikud, finantsilised, õiguslikud ja muud huvid, võib mõjutada nii andmete kogumist kui ka tõlgendamist (Fisher, Anushko 2012). Kas näiteks karastusjookide tootja tellitud uuring, mis väidab, et limonaadid võivad olla tervisliku toitumise osa, on ikka erapooletu ja usaldatav ning kas seda peaks arvestama tervisepoliitika meetmeid kujundades? Paratamatult võiks seoses eelneva näitega tekkida ka küsimus, milline on selle uuringu teostaja vastutus rasvumise kui nurjatu probleemi (wicked issue) lahendamisel (või pigem selle lahendamise takistamisel)? Võib ju öelda, et seni kui uuringu rahastaja on avalik ja tema huvi seetõttu ka justkui arusaadav, on tarbija otsustada, kas ja millises ulatuses uuringut usaldada. Samas on aga kaheldav, kui läbipaistvad need huvid tavainimesele tegelikult on, eriti juhul kui uuringutulemusi vahendav meediakanal on pigem orienteeritud löövale pealkirjale, mitte sisu kontrollile ja täpsele edastamisele (vt nt Löbl, Onneken 2015). Pealtnäha vastuoluline info võib kaasa tuua konflikte otsustusprotsessis, kus osalised lähtuvad erineva usaldusväärsusega andmeallikatest ega jõua seetõttu kokkuleppele, millised piirangud ja meetmed oleksid piisavad, asjakohased või üldse vajalikud soovitava muutuse saavutamiseks.

Teiseks, väärtushinnangutele toetuvaid valikuid tehakse ka uurimisdisaini kujundamisel ning andmete kogumismeetodit valides: ükski valitud metoodika ei ole läbini objektiivne, igal meetodil on oma tugevused ja nõrkused ning ohte uuritavatele võib tekkida mitmes etapis. Arutlemaks selle üle, millised on võimalikud eetilised ohukohad seoses andmete kogumise ja nende kasutamisega poliitikakujundamises, on kasulik aluseks võtta sotsiaalteadustes kasutatavad eetilised printsiibid (vt ptk 1.4). Andmete kasutamise eetilisi printsiipe avalike teenuste kujundamisel ja innovaatiliste poliitikameetmete väljatöötamisel on rõhutanud ka mitmed riigid. Ühendkuningriigi Data Ethics Framework rõhutab näiteks, et andmeanalüüside tegemisel kasutatavad andmed, meetodid ja algoritmid peavad olema avalikud, aidates nii kaasa analüüsiprotsessi läbipaistvusele ja uuringu korraldajate vastutuse tagamisele. Lühikese ülevaate uurimistööde eetikat puudutavatest koodeksitest ja nende kujunemisloost annavad näiteks Celia Fisher ja Andrea Anushko (2012).

Kolmandas etapis ehk andmete kogumisel on üks olulisemaid printsiipe uuritavate teadliku nõusoleku põhimõte (vt ka ptk 1.4). Printsiip on iseenesest justkui lihtne ja järgib sotsiaalteadustes kasutatavaid üldisi eetilise uurimuse põhimõtteid, samas on aga selge, et andmeanalüütik, kes tegutseb poliitikakujundamise eesmärgil, ei suuda alati ette ennustada, millist infot täpselt võidakse koguda ning kuidas see võib hiljem osalejat mõjutada (Creswell, Creswell 2018; Fisher, Anushko 2012). Näiteks võivad tekkida selged õiguslikud või sotsiaalsed tagajärjed juhul, kui info uuritavate kohta peaks avalikuks muutuma (nt info terviseseisundi kohta, nagu nakatumine HIV-ga, võib oluliselt mõjutada suhtumist ja kaasa tuua sotsiaalse tõrjutuse; kuritegevust uurides võib avalikuks muutunud info kaasa tuua õiguslikke tagajärgi). Paratamatult tekivad siin riived selliste väärtustega nagu läbipaistvus (transparency) ja hoolsuskohustus (beneficence) ehk kohustus maksimeerida uuringuga saadavat kasu ja minimeerida kahju.

Probleemid muutuvad veelgi komplitseeritumaks juhul, kui tegemist ei ole sotsiaalteaduslike uurimustega, vaid hoopis erasektori kogutud andmega. Kui avalikus sektoris on tänu õiguslikele regulatsioonidele võimalik veidi lihtsamalt aru saada, millised andmed on riigil isiku kohta olemas, kellel on neile juurdepääs ja millistel tingimustel on võimalik seda infot kolmandatele osapooltele edastada, siis erasektoris ei ole info jagamine olnud alati nii selge. Kliendiandmete kogumine ja müük teistele ettevõtetele, sellest tulenevad suunatud reklaamid ja müügikõned ning võimalikud privaatsuseriived ei ole alati üksikisiku poolt kontrollitavad ega ka hoomatavad. Keeruline on aru saada, et andmed, mis oleme teadlikult andnud näiteks poodides kliendikaarti registreerides (telefoninumber, e-posti aadress) ja mis ei ole just salastatud info, võidakse edasi müüa ja see võib kaasa tuua tagajärgi, mida alguses ei teadvustatud. Selles situatsioonis on eriti haavatavad näiteks eakad, kes ei suuda pealetükkivate müügikõnedega toime tulla. Jällegi tekib küsimus nii süsteemi ja andmete kasutamise läbipaistvusest kui ka osapoolte vastutusest (nii andmete müüjad kui ka ostjad). Selliseid vastuolulisi arusaamu ideaalides ja väärtustes on uuringutes nimetatud ka algoritmiliseks lõheks (Männiste, Masso 2020).

 

Sotsiaalteadustele omaselt võib oluline probleem olla ka andmete tõlgendamine. See, milliseid andmeid järelduste ja soovituste tegemisel kaasata ning kuidas neid tõlgendada, ei ole absoluutne ega ka mitte tingimata objektiivne. Kui eespool on mainitud uuringu rahastaja võimalikku survet ja sellest tulenevat huvide konflikti (Fisher, Anushko 2012; May 2011), siis tegelik osapoolte skaala on veidi laiem. Näiteks on poliitikate kujundamisel sageli mitu osapoolt, kelle ettekujutuses võib andmete põhjal jutustatav lugu suuresti erineda, lähtuvalt sellest, millise huvigrupi esindajatega on tegemist. Riigi julgeoleku eest seisjad võivad pooldada suuremat juurdepääsu andmetele selleks, et teha paremaid otsuseid ja võimalikke rünnakuid ennetada; inimeste privaatsuse ja põhiõiguste kaitsjad aga pooldavad pigem väiksemat juurdepääsu ja suuremat eelkontrolli. Kuid see, kelle lugu ja eesmärke peaks uurimuse kavandamisel ja andmete analüüsil arvesse võtma, ei ole ühemõtteline (vt ka ptk 4.2). Kui võtta näiteks poliitikaanalüüsid, siis ei ole kindel, kas arvestama peaks ühiskonnaga laiemalt, konkreetse avaliku teenuse klientidega (või nende alarühmadega), muude sidusgruppidega, teenuse eest vastutava valitsusasutusega, käesoleva hetke valitsuskoalitsiooni partneritega või hoopis kellegi muuga (Rossi et al. 2019: 295). Kui hindamiskriteeriumiks on asjakohasus (relevance) ja kasulikkus (utility), siis on ehk kõige parem aluseks võtta poliitika sihtgrupi või avaliku teenuse kliendi perspektiiv – kas püstitatud eesmärk lähtub tegelikest vajadustest ja kas poliitika aitab probleemi lahendada. Kui aga hindamiskriteeriumiks on tõhusus (efficiency), siis võib kasulik olla pigem elluviimise eest vastutava institutsiooni seisukoht. Küsimusele, milline lähtekoht aluseks võtta, ei ole õiget-valet vastust; pigem on küsimus selles, kas see on selgelt välja öeldud ja analüüsitulemuste kasutajale arusaadav.

Väärtuste kujundamise alusena on eelkõige kolm peamist võimalust: 1) metodoloogiline objektiivsus ja läbipaistvus (analytical integrity), 2) vastutus kliendi (ehk tellija, nt riigiasutuse) ees ja 3) analüütiku enda arusaam heast ühiskonnast (Weimer, Vining 2005: 41–43). Neist esimene rõhutab analüütiku rolli „objektiivse tehnikuna“, kelle ülesanne on võimalikult igakülgselt identifitseerida olulised hindamiskriteeriumid ja andmed ning neid ka võimalikult objektiivselt tõlgendada, lähtuvalt kõnealuse valdkonna parimast praktikast. Eesmärk on anda analüüsi kliendile (tellijale) võimalikult täpne hinnang või prognoos, tuua välja kõik valikukohad, jättes valikud kliendi teha. Teise variandi puhul on analüütiku ülesanne anda küll kliendile igakülgset infot, kuid tõlgendada vaieldavaid olukordi kliendi kasuks või lähtuvalt tema perspektiivist. Primaarseks väärtuseks on siinkohal analüütiku lojaalsus kliendile ning isiklike seisukohtade tagaplaanile jätmine. Kolmanda variandi puhul aga identifitseerib analüütik end pigem poliitikaprobleemi edendajana või konkreetse sihtgrupi kaitsjana ning seega protsessi osapoolena. Seega tõlgendatakse vaieldavad andmed lähtuvalt sihtgrupist või eesmärgist ning lojaalsus on suunatud neile, mitte kliendile.

Paratamatult kujuneb valik variantide vahel mitme osapoole koosmõjul. Faktoriteks võivad olla nii analüüsi tellija surve, analüütiku organisatsiooniline kuuluvus kui ka analüütiku enda väärtushinnangud. Analüüsi tellija surve on sageli seotud eespool mainitud rahastamisega. Organisatsiooniline kuuluvus võib analüüsi raames ette kirjutada ka konkreetse (poliitilis-ideoloogilise) vaatenurga (nt poliitikat analüüsivad mõttekeskused (thinktanks), mis on seotud ühe erakonna ja ideoloogiaga), mille kaudu kõiki andmeid tõlgendatakse. Juhul kui selline organisatsiooniline surve või tellija suunis puudub, on üha suurem mõju analüütiku enda seisukohtadel, sealhulgas sellel, kui oluline uuritav teema talle isiklikult on (nt kui analüüsitakse ühiskondlikku probleemi, millega on olemas isiklik seos, vs. juhtumid, kus isiklik seos puudub) ning kuidas see tema objektiivsust mõjutab.

Seega ei saa väärtusaluste aspektist kõrvale jätta analüütiku enesereflektsiooni – teadlikku mõtestatud valikut väärtuste vahel, mis suunavad järelduste tegemist ja soovituste andmist. Andmepõhise otsustamise ja analüütiku enesereflektsiooni kombineerimise vajadus otsuste tegemisel on viinud andmeõigluse printsiipide sõnastamiseni, millest töös andmetega lähtutakse.

12Ekspertuuringu meetod, mille eesmärk on probleemide lahendamine, planeerimine ja/või otsuste tegemine. Delfi uuringu käigus (võib toimuda ka e-posti teel) kogutakse ekspertide arvamusi uuritava probleemi kohta mitmeringilise küsitlusena. Pärast iga küsitlusvooru tehakse kokkuvõte eelmise ringi uuringutulemustest ning täpsustatakse esitatavaid küsimusi. Uuringu eesmärk on sageli, kuid mitte tingimata, analüüsitavas probleemis konsensusele jõuda.