Mine üle audioraamatule
Джулии
Если данные говорят, что любить тебя неправильно, я не хочу правильного.
Don’t Trust Your Gut: Using Data to Get What You Really Want in Life
Seth Stephens-Davidowitz
© 2022 by Seth Stephens-Davidowitz
© Вантух К. А., перевод на русский язык, 2023
© Оформление. ООО «Издательство «Эксмо», 2023
Вам вполне по силам улучшить качество решений, касающихся вашей жизни. Большие данные могут вам в этом помочь.
На наших глазах радикально, хотя и незаметно на первый взгляд, меняются наши представления о самых важных областях человеческой жизни. Причиной тому служат Интернет и данные, которые он сгенерировал. В последние годы ученые проводили исследование различных, но всегда огромных массивов данных – от сообщений OkCupid до биографических статей на Wikipedia и статуса отношений в социальных сетях. В этих миллиардах записей они смогли найти – вероятно, впервые – достоверные ответы на основные жизненные вопросы. В частности, на такие:
• По каким признакам можно определить хорошего родителя?
• Кто богат, а мы не догадываемся об этом? И почему?
• Каковы шансы стать знаменитостью?
• Почему некоторые люди необычайно удачливы?
• По каким признакам можно предсказать счастливый брак?
• Если посмотреть на вопрос шире, что вообще делает людей счастливыми?
Часто ответы, найденные при помощи данных, не соответствуют нашим интуитивным догадкам и требуют не тех решений, которые мы приняли бы. Дело обстоит просто: из этих гор данных можно сделать выводы, которые дают возможность вам – или кому-нибудь из ваших знакомых – улучшить качество своих решений.
Вот три примера, взятых из исследовательских работ, касающихся далеких друг от друга областей жизни.
Пример № 1: предположим, вы холостяк или незамужняя женщина и личная жизнь у вас обстоит хуже, чем хотелось бы. Вы пытаетесь улучшить себя всеми способами, которые вам советуют окружающие. Одеваетесь лучше. Отбеливаете зубы. Делаете новую дорогую стрижку. Все впустую. Женихи (или невесты) не толпятся под вашей дверью.
Здесь могут оказаться полезными выводы из больших данных.
Математик и литератор Кристиан Раддер исследовал миллионы случаев выбора на OkCupid в поисках свойств, обеспечивающих наибольший успех у противоположного пола[1]. Он обнаружил – и это совсем не удивительно, – что популярнее всего оказываются красавцы и красавицы, живущие среди нас Брэды Питты и Натали Портман.
Но в этих горах данных он обнаружил и другой тип людей, показавший неожиданно высокую популярность: обладателей экстремальной внешности. Представьте себе, например, синие волосы, боди-арт, безумные очки или бритый череп.
В чем же дело? Ключ к успеху обладателей необычной внешности лежит в том, что, хотя многим она не слишком нравится, всегда есть группа людей, которых она привлекает очень. А в вопросах отношений с противоположным полом это решает все.
Здесь, если ваша внешность отличается от кинематографического идеала красоты, лучшей стратегией будет, по словам Раддера, набрать «много “да”, много “нет”, но как можно меньше “э…”». Подобная тактика, как открыл Раддер, способна увеличить число сообщений на 70 %. Создайте крайний вариант себя, говорят нам данные, и найдутся люди, для которых вы будете в высшей степени желанны.
Пример № 2: предположим, у вас только что родился ребенок (кстати, мазаль тов[2]). Нужно выбрать район, где вы собираетесь его растить. Вы советуетесь с несколькими друзьями, выясняете у Google некоторые основные факты – и, собственно, все. Вы счастливый обладатель дома для своей семьи. Не бином Ньютона, правда?
В действительности сегодня дело обстоит ровно наоборот.
Ученые воспользовались недавно оцифрованными данными налоговой службы, чтобы исследовать жизненные траектории сотен миллионов американцев. Они обнаружили, что возможность вырасти в определенном городе – более того, в определенном квартале этого города – резко повышает шансы в жизни. Причем эти кварталы могут оказаться вовсе не теми, которые люди считают наиболее престижными. И не теми, жилье в которых стоит дороже всего. Сейчас существуют карты, созданные на основе тщательного анализа данных, которые показывают родителям перспективность любого квартала в Соединенных Штатах.
И это не все. Ученые внимательнейшим образом просеяли данные в поисках свойств, общих для всех перспективных районов. По ходу работы они откинули значительную часть житейской мудрости, касающейся воспитания детей. Благодаря большим данным мы наконец можем просветить родителей насчет того, что действительно имеет значение для успеха ребенка (намек: пример взрослых), а что имеет гораздо меньший вес (намек: лучшие школы).
И пример № 3: предположим, вы начинающий художник, которому никак не удается поймать удачу за хвост. Вы покупаете все книги по технике живописи, какие можете. Вы просите оценок и советов у друзей. Вы переделываете свои работы снова, снова и снова. И при этом все кажется бесполезным. Вы не можете понять, что делаете не так.
Большие данные указали на вероятную ошибку.
Недавнее исследование карьеры тысяч художников под руководством Сэмюэла П. Фрайбергера[3] открыло прежде остававшуюся незамеченной закономерность, почему некоторые из них добиваются успеха, а некоторые нет. Итак, в чем же секрет отличия великих имен?
Часто он заключается в том, как выставлять свои работы. Данные говорят нам, что художники, не добившиеся ничего серьезного, имеют тенденцию выставлять свои работы все время в одних и тех же немногочисленных галереях. Те же, кто сделал большую карьеру, как правило, выставляются в гораздо большем числе точек, увеличивая тем самым вероятность встречи со своим шансом.
О важности демонстрации себя ради хорошей карьеры говорили многие. Но ученые, занятые исследованием данных, показали, что важно демонстрировать себя много где.
Я вовсе не хочу сказать, что эта книга будет источником советов исключительно для одиноких, молодых родителей и начинающих художников (хотя полезные указания для каждой из этих групп в ней еще будут). Моя задача – подчеркнуть выводы из больших массивов данных, которые были бы полезны именно для вас, независимо от того, на каком этапе жизни вы находитесь. Ниже последуют недавно разработанные указания, как быть счастливее, выглядеть лучше, продвинуться в карьере – и многое другое. А идея книги пришла ко мне как-то вечером, когда я… смотрел бейсбольный матч.
И я, и другие любители бейсбола не могли не заметить, что он стал совсем не той игрой, что тридцать лет назад. Когда я был мальчишкой и болел за New York Mets, бейсбольные команды выбирали тактику, опираясь на собственное понимание игры и интуицию. Они решали, сделать ли им бант или украсть базу, в зависимости от того, как смотрел на это менеджер команды. Они выбирали игроков для приобретения, опираясь на впечатления скаута.
Однако во второй половине XX века стали появляться признаки, указывавшие на существование более разумной тактики. В моем детстве отец каждый год приносил домой новую книгу Билла Джеймса. Джеймс, который работал охранником на заводе консервированных бобов со свининой, был одержим бейсболом. И у него был нестандартный метод анализа игры – с помощью недавно появившихся компьютеров и оцифрованных данных. Джеймс и его коллеги – они называли себя сайберметристами – при помощи анализа данных выяснили, что большинство решений, принимавшихся командами под влиянием интуиции, были полностью ошибочными.
Как часто команде нужно исполнять бант? Значительно реже, чем сейчас, говорили сайберметристы. А как часто следует красть базы? Почти никогда. Сколько должны стоить игроки, приносящие много пробежек? Больше, чем думали команды. Кого следовало приобретать? Больше питчеров из университетских команд.
Работа Джеймса производила захватывающее впечатление не только на моего отца. Билли Бин, который начинал карьеру в качестве игрока, а впоследствии переквалифицировался в бейсбольного администратора, тоже был его горячим сторонником. И став генеральным директором клуба Oakland Athletics, он решил управлять им в соответствии с принципами сайберметрики.
Идея принесла выдающиеся результаты. В книге Moneyball приводится довольно известный факт: в Oakland Athletics платили очень скромные зарплаты, но при этом команда выходила в плей-офф в 2002 и 2003 годах[4]. С тех пор роль аналитики в бейсболе резко возросла. Клуб Tampa Bay Rays, о котором говорили, что он больше следует Moneyball, чем сама команда Oakland Athletics из Moneyball[5], вышел в World Series 2020, несмотря на третий с конца уровень зарплат в бейсболе.
Принципы Moneyball и лежащая в их основе здравая идея, что когнитивные искажения могут быть компенсированы данными, повлияли на многие учреждения и виды спорта. Команды NBA все больше используют аналитику, прослеживающую траекторию каждого броска[6]. В данных о 300 миллионах бросков были найдены значительные отклонения от оптимальной техники. Оказывается, что для среднего игрока NBA, выполняющего бросок в прыжке, вероятность пропустить бросок с недолетом вдвое выше, чем бросок с перелетом. А когда он выполняет бросок из угла, он скорее промахнется в сторону, противоположную щиту, потому что может опасаться попасть в него. Игроки воспользовались подобными данными, чтобы и корректировать когнитивные искажения, и одновременно делать больше бросков.
Фирмы Кремниевой долины в значительной степени опираются на принципы, изложенные в Moneyball. Google, где я в прошлом работал аналитиком данных, определенно верит в полезность данных при принятии важных решений. Была довольно известная история, когда оттуда уволился дизайнер, недовольный тем, что компания предпочитала данные, а не интуицию квалифицированных дизайнеров. Последней каплей для него стал эксперимент, в котором компания испытывала сорок один оттенок синего[7] для гиперссылок в Gmail, чтобы выяснить на практике, какой из них даст больше всего кликов. Возможно, дизайнер и был недоволен, но эксперимент принес Google 200 миллионов долларов дополнительного дохода в год[8]. Google ни разу не поколебался в своей вере в данные – и со временем превратился в компанию ценой в 1,8 триллиона долларов. Как сказал ее бывший исполнительный директор Эрик Шмидт: «В Бога мы верим. Все остальные должны предоставлять данные»[9].
Джеймс Симонс, математик мирового класса и основатель компании Renaissance Technologies, принес строгий анализ данных на Уолл-стрит. Он и его группа количественных аналитиков создали беспрецедентный массив данных, содержащий одновременно курсы акций и события реального мира, и подвергли его анализу на предмет закономерностей. Какова тенденция изменения курсов после того, как компания-эмитент объявляет о прибылях? А при дефиците хлеба? А после упоминания компании в газете?
С момента основания Renaissance ее флагманский инвестиционный фонд Medallion[10], который в своей торговой стратегии опирается исключительно на закономерности в данных, всегда приносил 66 % прибыли до вычета налогов и сборов. В тот же период S&P 500 приносил 10 % до вычета. Экономист Кеннет Френч (его имя связывают с гипотезой эффективного рынка, говорящей о практической невозможности обеспечить показатели существенно выше S&P 500) так объясняет успех Renaissance: «Видимо, они просто лучше всех остальных»[11].
Но как нам принимать важные решения, касающиеся личной жизни? Как выбрать партнера для брака, как ходить на свидания, как проводить время, соглашаться ли на то или иное предложение о работе?
На кого мы больше похожи – на Oakland Athletics в 2002 году или на прочие бейсбольные команды в то же время? На Google или на привычный магазин? На Renaissance Technologies или на обычного управляющего инвестиционным фондом?
Я бы сказал, что большинство из нас принимают важнейшие решения, опираясь на интуицию. Может быть, мы посоветуемся с кем-то из друзей, родственников или самозваных гуру по части искусства жить. Может быть, прочитаем какие-то ни на чем не основанные советы. Бросим беглый взгляд на самую базовую статистику. И затем просто сделаем то, что кажется нам правильным.
«Что бы произошло, начни мы решать самые важные жизненные вопросы с опорой на данные?» – спрашивал я себя, смотря бейсбольный матч по телевизору. Если бы мы администрировали свою жизнь так же, как Билли Бин – клуб Oakland Athletics?
Я знаю, что в наши дни подобный подход становится все более осуществимым. В своей предыдущей книге «Все лгут» я показывал, как новые данные, которые стали доступны нам благодаря Интернету, меняют наши представления об обществе и работе человеческого ума. Может быть, статистическая революция началась с бейсбола именно из-за статистической информации, которую собирали и на которую создавали спрос сумасшедшие болельщики. Так сказать, «революция Moneyball для нашей жизни» стала возможной благодаря данным, которые собрали наши компьютеры и смартфоны.
Давайте зададимся не таким уж тривиальным вопросом: что делает людей счастливыми?
Данные, необходимые для строгого и систематического ответа на этот вопрос, в XX веке были недоступны.
Когда революция Moneyball потрясла мир бейсбола, в распоряжении сайберметристов были аккуратнейшим образом зарегистрированные данные по каждой игре и им было что анализировать. Но аналитики данных тогда не располагали подобными сведениями относительно существенных жизненных решений и настроений обычных людей. В те времена счастье, в отличие от бейсбола, не поддавалось строгому анализу.
Но теперь такая возможность есть.
Блестящие специалисты из Google, Джордж Маккеррон и Сюзанна Мурато, при помощи аппаратов iPhone сформировали не имеющий аналогов массив данных о счастье и назвали свой проект Mappiness[12]. Они привлекли к работе десятки тысяч пользователей, которых опрашивали по нескольку раз в течение дня. Им задавали простые вопросы: что они делают в данный момент, с кем они, насколько при этом счастливы. Таким образом они получили массив данных более чем из трех миллионов «замеров счастья». Это нельзя даже сравнивать с десятками измерений, на которые опирались исследования счастья в прошлом.
Некоторые из скрытых в этих миллионах точек результатов наводят на размышления. Например, болельщики получают больше страданий от проигрыша своей команды, чем радости от ее победы. Иногда они противоречат нашим интуитивным представлениям: так, употребление алкоголя во время исполнения рутинных обязанностей в среднем доставляет больше удовольствия, чем во время общения с друзьями. Иногда результаты представляются здравыми: работа имеет тенденцию раздражать – если только мы не работаем вместе с друзьями.
Но полезны эти результаты всегда. Вы никогда не задавались вопросом, как в точности погода влияет на настроение? Какие занятия в среднем чаще всего обманывают нас в смысле ожидаемого удовольствия? Насколько деньги действительно важны для счастья? В какой мере настроение зависит от среды? Благодаря Маккеррону и Мурато у нас теперь есть достоверные ответы на эти вопросы – и они будут предметом восьмой и девятой глав. Я даже завершу эту книгу надежной формулой счастья, выведенной из замеров на тысячах смартфонов. Я называю ее «ответом на главный вопрос жизни, полученным при помощи данных».
Итак, последние четыре года я, вдохновившись примером бейсбола, погрузился в напряженную научную работу. Я говорил со специалистами. Читал академические публикации. Рассматривал приложения к публикациям под таким углом, который – я совершенно уверен в этом – еще не приходил в голову ни одному ученому. Провел несколько собственных исследований и интерпретировал их результаты. Свою задачу я видел в том, чтобы найти своих Биллов Джеймсов в таких областях, как брак, воспитание детей, спортивные достижения, финансовое благосостояние, удача, стиль и счастье, – и дать каждому из вас возможность стать Билли Бином своей жизни. Я готов поделиться всем, что узнал.
Называйте это «Moneyball вашей собственной жизни».
Прежде чем приступить к работе, я задал себе несколько вопросов. Как могла бы выглядеть жизнь, в основу которой положены принципы Moneyball? Как мог бы выглядеть наш процесс принятия решений, если бы мы, подобно Oakland Athletics и Tampa Bay Rays, следовали данным, а не инстинктам? Одно из бросающихся в глаза свойств бейсбола после Moneyball заключается в том, что некоторые решения опирающихся на аналитику команд выглядят… скажем так, немного странными. Вот вам пример – расположение инфилдеров[13].
В эпоху после Moneyball бейсбольные команды все активнее смещают положение полевых игроков. Они группируют многих своих защитников в одной и той же части поля, оставляя его обширные участки совершенно незащищенными, куда бьющему игроку ничего не стоит направить мяч. Такое смещение игроков на игровом поле кажется болельщикам традиционного бейсбола чистым безумием. Но от безумия оно предельно далеко. Подобное смещение оправдывается огромными массивами данных, предсказывающими, куда именно конкретный игрок, скорее всего, пошлет мяч[14]. Числа говорят бейсбольным командам, что такая тактика верна, пусть и кажется неверной на первый взгляд.
Если мы применим подход Moneyball к нашей жизни, то можем ожидать, что некоторые кажущиеся странными решения – назовем их жизненными смещениями на игровом поле – на самом деле оправданны.
Мы уже говорили о поиске пары. Побриться наголо или покрасить волосы в синий цвет, чтобы тебя чаще приглашали на свидания, – это аналоги передвижения на игровом поле, только в качестве поля выступает сама жизнь. А вот еще один аналог, только найденный в больших данных по продажам.
Предположим, вы пытаетесь что-нибудь продать. Этот опыт все больше становится повсеместным. Как пишет Дэниел Пинк в книге To Sell Is Human, «неважно, выступаем ли перед коллегами, пытаемся ли убедить тех, от кого зависит финансирование, или развлекаем детей… мы все сейчас занимаемся продажами»[15].
В любом случае, что бы вы ни пытались продать, вы вкладываете в это дело всю свою душу.
Вы пишете текст своего выступления (это хорошо!). Репетируете его (хорошо!). Ночью как следует высыпаетесь (хорошо!). Съедаете основательный завтрак (хорошо!). Справляетесь с нервами и начинаете говорить (хорошо!).
И вот, произнося речь, которая призвана продать ваш товар, вы вспоминаете, что нужно передать аудитории свою уверенность в нем широкой белозубой улыбкой (а вот это, как ни странно… не хорошо).
В недавно проведенном исследовании сопоставляются проявление эмоций агентами по продажам и результаты их работы.
Массив данных – 99 451 выступление на розничной платформе с живым потоковым видео. (Сейчас люди все чаще приобретают товары и услуги на платформах типа Amazon Live, позволяющих продавцам рекламировать свой товар при помощи видео.) Исследовали получали видео каждого такого рекламного выступления и данные о последовавших продажах. (Они также располагали информацией о продаваемом товаре, его цене и наличии бесплатной доставки.)
Методы – искусственный интеллект и глубокое обучение. Исследователи преобразовали 62,32 миллиона видеокадров в цифровые данные. В частности, искусственный интеллект оказался способен закодировать эмоции, выражаемые продавцом в видео. Выглядел ли он раздраженным? Испытывающим отвращение? Испуганным? Удивленным? Грустным? Или довольным?
Результат: исследователи обнаружили, что эмоции продавца – важнейший фактор для предсказания количества проданного товара. Неудивительно, что, когда продавец выражал отрицательные эмоции, такие как раздражение или отвращение, он продавал меньше. Злость продается плохо. А вот что как раз удивительно, так это то, что, когда он показывал положительные эмоции, такие как довольство или удивление, он тоже продавал меньше! Радость тоже продается плохо. Если речь заходит об увеличении продаж, сдерживание эмоций продавцом – иными словами, когда на лице у него покерфейс вместо широкой улыбки, – сказывается на результатах продаж примерно вдвое лучше, чем бесплатная доставка[16].
Иногда, чтобы продать товар, не стоит слишком демонстрировать энтузиазм на его счет. Может быть, это кажется странным – но данные говорят, что дело обстоит именно так.