Loe raamatut: «Эволюция физики»
Серия «Наука: открытия и первооткрыватели»
Albert Einstein Leopold Infeld
THE EVOLUTION OF PHYSICS
Перевод с английского С.Г. Суворова
Серийное оформление и компьютерный дизайн Г. Смирновой
© The Hebrew University of Jerusalem, Israel
© Перевод. С.Г. Суворов, наследники, 2018
© Издание на русском языке AST Publishers, 2018
Предисловие
Прежде чем вы начинаете чтение, вы вправе ожидать ответа на некоторые простые вопросы. С какой целью написана эта книга? Кто тот воображаемый читатель, для которого она предназначается?
Трудно начать с ясного и последовательного ответа на эти вопросы. Гораздо легче ответить на них в конце книги, хотя это было бы совершенно лишним. Мы находим, что проще сказать, чем эта книга не стремится быть. Мы не писали учебника по физике. Здесь нет систематического изложения элементарных физических фактов и теорий. Скорее наше стремление состояло в том, чтобы широкими штрихами обрисовать попытки человеческого разума найти связь между миром идей и миром явлений. Мы стремились показать те активные силы, которые вынуждают науку создавать идеи, соответствующие реальности нашего мира. Но наше изложение должно быть простым. Сквозь лабиринт фактов и понятий мы должны были избрать столбовой путь, который казался нам самым характерным и значительным. Те факты и теории, которые не лежали на избранном пути, мы должны были опустить. Наша основная цель вынуждала нас сделать определенный выбор фактов и идей. О важности проблемы не следует судить по числу страниц, посвященных ей. Некоторые существенные направления мысли не были отражены не потому, что они казались нам несущественными, а потому, что они не лежат на том пути, который мы избрали.
Когда мы писали книгу, мы вели длинные дискуссии о характере нашего идеализированного читателя и сильно беспокоились о нем. Мы восполняли полное отсутствие у него каких-либо конкретных сведений по физике и математике большим числом его достоинств. Мы считали его заинтересованным в физических и философских идеях и были вынуждены восхищаться тем терпением, с каким он пробивался через менее интересные и более трудные страницы. Он ясно сознавал, что для того, чтобы понять какую-либо страницу, он должен был внимательно прочитать предыдущие. Он знал, что научная, хотя бы и популярная, книга не может читаться так же, как новелла.
Книга – это беседа между вами и нами. Вы можете найти ее скучной или интересной, утомительной или возбуждающей, но наша цель будет достигнута, если эти страницы дадут некоторое представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями.
А. Эйнштейн
Л. Инфельд
I. Расцвет механистического воззрения
Великая повесть о тайнах природы. – Первая руководящая идея. – Векторы. – Загадка движения. – Еще одна руководящая идея. – Является ли теплота субстанцией? – Увеселительная горка. – Мера превращения. – Философские воззрения. – Кинетическая теория вещества.
Великая повесть о тайнах природы
В нашем воображении рисуется книга. Это искусно написанная повесть о событиях, обстоятельства которых скрыты от нас под покровом загадочных тайн. Повесть эта дает нам все существенные путеводные нити и заставляет нас создать свою собственную теорию происходящего. Если мы внимательно следуем замыслу повести, мы приходим к полному раскрытию всех обстоятельств еще раньше, чем автор раскрывает их в конце книги. Само это раскрытие, если речь идет не о плохой повести, не разочаровывает нас: оно появляется в тот самый момент, когда мы его ждем.
Можем ли мы уподобить читателя такой книги ученым, которые через все следующие друг за другом поколения продолжают добиваться раскрытия тайн в книге природы? Сравнение неверно и его нужно впоследствии отбросить, но оно имеет некоторое оправдание; его следует расширить и видоизменить, чтобы сделать более соответствующим попыткам науки разгадать тайну Вселенной.
Эта великая повесть о тайнах еще не окончена. Мы даже не можем быть уверены в том, что она имеет окончательное завершение. Но уже само чтение дало нам много. Оно научило нас основам языка природы. Оно позволило нам понять многие путеводные нити и было источником радости и духовного подъема в периоды усиленного продвижения науки. Но мы ясно представляем себе, что, несмотря на все прочитанные и разобранные тома, мы еще далеки от ее конца, если, конечно, такой конец вообще существует. В каждой стадии мы стремимся найти объяснение, находящееся в согласии с уже открытыми идеями. Теории, принятые в качестве пробных, объяснили много фактов, но никакого общего решения, совместимого со всем тем, что нам известно, пока еще не достигнуто. Очень часто совершенная на вид теория оказывалась неверной. Появляются новые факты, которые противоречат теории или же не объясняются ею. Чем больше мы читаем, тем более полно и высоко оцениваем совершенную конструкцию книги, хотя полная разгадка ее тайн кажется все удаляющейся по мере того, как мы продвигаемся вперед.
Со времени великолепных рассказов Конан-Дойля почти в каждой детективной новелле наступает такой момент, когда исследователь собрал все факты, в которых он нуждается, по крайней мере, для некоторой фазы своей проблемы. Эти факты часто кажутся совершенно странными, непоследовательными и в целом не связанными. Однако великий детектив заключает, что в данный момент он не нуждается ни в каких дальнейших розысках и что только чистое мышление приведет его к установлению связи между собранными фактами. Он играет на скрипке или, развалившись в кресле, наслаждается трубкой, как вдруг, о Юпитер, эта связь найдена! Он не только уже имеет в руках объяснение всех обстоятельств дела, но он знает, какие другие определенные события должны были случиться. Так как теперь он совершенно точно знает, где искать их, он может, если ему хочется, идти собирать дальнейшие подтверждения своей теории.
Ученый, читая книгу природы, если нам позволено будет повторить эту банальную фразу, должен сам найти разгадку, потому что он не может, как это часто делает нетерпеливый читатель других повестей, обратиться к концу книги. В нашем случае читатель – это тоже исследователь, который ищет, как объяснить, хотя бы отчасти, связь событий между собой. Чтобы получить даже частичное решение этой задачи, ученый должен собирать неупорядоченные факты и своим творческим мышлением делать их связанными и понятными.
Наша цель – в последующих страницах описать в общих чертах, какова работа физиков, соответствующая чистому мышлению исследователя. Мы будем, главным образом, касаться роли мыслей и идей в смелых исследованиях, имеющих целью познание физического мира.
Первая руководящая идея
Попытки прочитать великую повесть о тайнах природы так же стары, как и само человеческое мышление. Однако лишь немногим более трех столетий назад ученые начали понимать язык этой повести. С того времени, т. е. со времени Галилея и Ньютона, чтение продвигалось быстро. Развилась техника исследования, систематические методы отыскания и изучения руководящих идей. Были разрешены некоторые загадки природы, хотя многие решения в свете дальнейших исследований оказались временны́ми и поверхностными.
Самая фундаментальная проблема, остававшаяся в течение тысячи лет неразрешенной из-за ее сложности, – это проблема движения. Все движения, которые мы встречаем в природе, – движение камня, брошенного в воздух, движение плывущего в море корабля, движение повозки, тянущейся вдоль улицы, – в действительности очень сложны. Чтобы понять все эти явления, лучше всего начать с наиболее простых возможных случаев и постепенно продвигаться к более сложным. Рассмотрим тело, находящееся в покое. Чтобы изменить положение такого тела, необходимо оказать некоторое воздействие на него, толкнуть или поднять, или заставить действовать на него другие тела, например лошадь или паровую машину. Наша интуиция связывает движение с такими действиями, как толчок или тяга. Повторение опыта заставило бы нас отважиться на дальнейшее утверждение, что если мы хотим, чтобы тело двигалось быстрее, мы должны толкать его сильнее. Кажется естественным заключение, что чем сильнее действие, оказываемое на тело, тем больше будет его скорость. Карета, запряженная четверкой лошадей, движется быстрее, чем карета, запряженная парой. Таким образом, интуиция говорит нам, что скорость существенно связана с внешним воздействием.
Для читателей детективных выдумок привычно, что фальшивая нить запутывает повесть и отдаляет ее разрешение. Метод рассуждения, навязываемый интуицией, неверен и приводит к ложным идеям о движении, которые сохранялись в течение столетий. Может быть, главным основанием продолжительной веры в эту интуитивную идею повсюду в Европе был великий авторитет Аристотеля. В «Механике», в продолжение двух тысяч лет приписываемой ему, мы читаем:
«Движущееся тело останавливается, если сила, его толкающая, прекращает свое действие».
Открытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в истории человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, так как они иногда ведут по ложному следу.
Но где интуиция ведет к ошибкам? Правильно ли сказать, что карета, запряженная четверкой лошадей, должна двигаться быстрее, чем запряженная только двумя?
Проверим ближе основные факты движения, начиная с простых повседневных опытов, хорошо известных человечеству с начала цивилизации и полученных в жестокой борьбе за существование.
Предположим, что некто, идущий по горизонтальной дороге с багажной тележкой, внезапно перестает ее толкать. Тележка будет двигаться еще некоторое время, пройдя небольшое расстояние, а затем остановится. Мы спрашиваем: как можно увеличить это расстояние? Для этого имеются различные способы, например смазывание колес или устройство более гладкой дороги. Чем легче вращаются колеса и чем ровнее дорога, тем дальше будет двигаться тележка. А что же дает смазывание колес или сглаживание неровностей пути? Только одно: становится меньше внешнее влияние. Уменьшается эффект, называемый трением, как в колесах, так и между колесами и дорогой. Это уже теоретическое толкование наблюдаемых данных, толкование, которое пока еще произвольно. Один важный шаг дальше, и мы попадем на правильный след. Представим себе совершенно гладкий путь и колеса, вовсе не имеющие трения. Тогда ничто не остановит тележки и она будет катиться вечно. Этот вывод достигнут только размышлением об идеализированном эксперименте, который никогда не может быть осуществлен, так как невозможно исключить все внешние влияния. Идеализированный эксперимент указывает путь, на котором фактически были установлены основы механики движения.
Сравнивая оба метода подхода к проблеме, мы можем сказать, что интуитивная идея такова: чем больше воздействие, тем больше скорость. Таким образом, наличие скорости показывает, действуют ли на тело внешние силы. Новый же путь, указанный Галилеем, таков: если ничто не толкает и не тянет тело или если на тело ничто не действует каким-либо другим образом, короче говоря, если на тело не действуют никакие силы, оно покоится или движется прямолинейно и равномерно, т. е. всегда с одинаковой скоростью по прямой. Следовательно, скорость сама по себе не показывает, действуют ли на тело внешние силы или нет. Правильный вывод Галилея был сформулирован спустя поколение Ньютоном в виде закона инерции. Этот закон – обычно первое из физики, что мы выучиваем в школе наизусть, и многие из нас могут его вспомнить.
Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, если только оно не вынуждено изменять его под влиянием действующих сил.
Мы видели, что закон инерции нельзя вывести непосредственно из эксперимента, его можно вывести лишь умозрительно – мышлением, связанным с наблюдением. Этот идеализированный эксперимент никогда нельзя выполнить в действительности, хотя он ведет к глубокому пониманию действительных экспериментов
Из многообразия сложных движений в окружающем нас мире мы выбираем в качестве первого примера прямолинейное и равномерное движение. Это движение – простейшее, ибо при этом на движущееся тело не действуют никакие внешние силы. Однако прямолинейное и равномерное движение никогда нельзя реализовать; камень, брошенный с башни, или тележка, толкаемая вдоль дороги, никогда не могут двигаться абсолютно прямолинейно и равномерно, потому что мы не можем полностью исключить влияния внешних сил.
В хорошей повести о загадочных тайнах самые очевидные нити часто ведут к ложным подозрениям. В наших попытках понять законы природы мы подобным же образом находим, что самое очевидное интуитивное объяснение зачастую бывает ложным.
Человеческое мышление творит вечно изменяющуюся картину вселенной. Вклад Галилея в науку состоял в разрушении интуитивного воззрения и в замене его новым. В этом – значение открытия Галилея.
Но немедленно же возникают дальнейшие вопросы о движении. Если не скорость является показателем внешней силы, действующей на тело, то что же тогда? Ответ на этот фундаментальный вопрос был найден Галилеем, а вернее Ньютоном; он образует новую руководящую идею в наших исследованиях.
Чтобы найти правильный ответ, мы должны немного глубже вдуматься в опыт с тележкой на абсолютно гладкой дороге. Прямолинейность и равномерность движения в нашем идеализированном опыте были обязаны отсутствию всех внешних сил. Теперь представим себе, что прямолинейно и равномерно движущаяся тележка получает толчок в направлении движения. Что произойдет при этом? Очевидно, ее скорость увеличится. Так же очевидно, что толчок в направлении, противоположном направлению движения, должен уменьшить скорость. В первом случае движение тележки ускоряется толчком, во втором – замедляется. Вывод вытекает сразу же: действие внешней силы изменяет скорость. Таким образом, не сама скорость, а ее изменение есть следствие толчка или тяги. Сила либо увеличивает, либо уменьшает скорость, соответственно тому, действует ли она в направлении движения или в противоположном направлении. Галилей видел это ясно и написал в своем труде «Беседы о двух новых науках»:
«…скорость, однажды сообщенная движущемуся телу, будет строго сохраняться, поскольку устранены внешние причины ускорения или замедления, – условие, которое обнаруживается только на горизонтальной плоскости, ибо в случае движения по наклонной плоскости вниз уже существует причина ускорения, в то время как при движении по наклонной плоскости вверх налицо замедление; из этого следует, что движение по горизонтальной плоскости вечно, ибо, если скорость будет постоянной, движение не может быть уменьшено или ослаблено, а тем более уничтожено».
Идя по этому верному пути, мы достигаем более глубокого понимания проблемы движения. Основой классической механики, как она сформулирована Ньютоном, является связь между силой и изменением скорости, а не между силой и самой скоростью, как мы думали, согласно интуиции.
Мы использовали два понятия, играющих принципиальную роль в классической механике: силу и изменение скорости. В дальнейшем развитии науки оба эти понятия расширяются и обобщаются. Поэтому они должны быть исследованы подробнее.
Что такое сила? Интуитивно мы чувствуем, что именно обозначается этим термином. Это понятие возникает из усилия, которое мы производим при толчке, броске или тяге, из того мускульного ощущения, которое сопровождает все эти действия. Но обобщение этих понятий выходит далеко за пределы столь простых примеров. Мы можем думать о силе, даже не воображая себе лошадь, тянущую повозку. Мы говорим о силе притяжения между Солнцем и Землей, Землей и Луной, и о таких силах, которые вызывают приливы и отливы. Мы говорим о силе, с которой Земля воздействует на все предметы вокруг нас, удерживая их в сфере своего влияния, и о силе ветра, производящей морские волны и приводящей в движение листья деревьев. Когда и где мы наблюдаем изменение скорости, тогда и там причиною этому является внешняя сила в самом общем смысле. Ньютон писал в своих «Принципах»:
«Воздействующая сила есть действие, оказываемое на тело, чтобы изменить его состояние покоя или равномерного прямолинейного движения.
Эта сила проявляется только в действии, она не сохраняется в теле, когда действие прекращается, ибо тело сохраняет всякое новое состояние, которое оно приобретает, исключительно благодаря его инерции. Воздействующие силы имеют различное происхождение: таковы силы удара, давления и центростремительные».
Если камень падает с вершины башни, его движение неравномерно: его скорость возрастает с падением. Мы заключаем, что в направлении движения действует внешняя сила или, другими словами, что Земля притягивает камень. Возьмем другой пример. Что происходит, когда камень брошен прямо вверх? Скорость уменьшается до тех пор, пока камень не достигнет своей наивысшей точки, после чего он начинает падать на Землю. Это уменьшение скорости вызывается той же силой, что и ускорение падающего тела. В одном случае сила действует в направлении движения, в другом случае – в противоположном направлении. Сила одна и та же, но она вызывает или возрастание скорости или замедление, соответственно тому, падает ли камень или он брошен вверх.
Векторы
Все движения, которые мы только что рассматривали, – прямолинейные, т. е. являются движениями по прямой линии. Теперь мы должны сделать дальнейший шаг. Мы приходим к пониманию законов природы, анализируя простейшие случаи и опуская в своих первых попытках все усложнения. Прямая линия проще, чем кривая. Однако рассмотрением только прямолинейного движения удовлетвориться невозможно. Движения Луны, Земли и планет – как раз те движения, к которым принципы механики применялись с таким блестящим успехом, – это все движения по кривым путям. Переход от прямолинейного движения к криволинейному приносит новые трудности. Мы должны иметь смелость побороть их, если мы хотим понять принципы классической механики, давшей нам первую руководящую идею и создавшей тем самым исходную точку для развития науки.
Рассмотрим другой идеализированный эксперимент, в котором совершенно гладкий шар катится по гладкому столу. Мы знаем, что если шару дан толчок, т. е. если к нему приложена внешняя сила, то его скорость изменится. Предположим теперь, что направление удара не совпадает с линией движения, как это имело место в примере с тележкой. Пусть удар направлен иначе, скажем, перпендикулярно к этой линии. Что происходит с шаром? Можно различать три стадии движения: начальное движение, действие силы и конечное движение, после того как сила перестала действовать. Согласно закону инерции скорость как перед действием силы, так и после него абсолютно постоянна. Но имеется различие между равномерным движением до и после действия силы: изменилось направление. Направление начального движения шара и направление действия силы перпендикулярны друг к другу. Конечное движение будет совершаться не по какой-либо одной из этих линий, а где-то между ними, ближе к направлению силы, если толчок силен, а начальная скорость мала, и ближе к первоначальной линии движения, если толчок незначителен, а начальная скорость велика. Наш новый вывод, основанный на законе инерции, таков: в общем случае действие внешней силы изменяет не только скорость, но и направление движения. Понимание этого факта подготовляет нас к обобщению, введенному в физику понятием вектора.
Мы можем продолжать применение нашего непосредственного метода рассуждения. Исходная идея – это опять Галилеев закон инерции. Мы еще далеко не исчерпали следствий этой ценной руководящей идеи в решении загадки движения.
Рассмотрим два шара, движущихся в разных направлениях по гладкому столу. Для большей определенности предположим, что оба направления перпендикулярны друг к другу. Так как никаких внешних сил нет, то движения шаров абсолютно равномерны. Предположим далее, что численно скорости их равны, т. е. оба шара за один и тот же промежуток времени покрывают одинаковое расстояние. Но правильно ли сказать, что оба шара имеют одинаковую скорость? Ответ может быть: либо да, либо нет! Если спидометры двух автомашин показывают сто километров в час, то обычно говорят, что они имеют одинаковую скорость независимо от того, в каком направлении они движутся. Но наука для своих нужд должна создавать свой собственный язык, свои собственные понятия. Научные понятия часто начинаются с понятий, употребляемых в обычном языке повседневной жизни, но они развиваются совершенно иначе. Они преобразовываются и теряют двусмысленность, связанную с обычным языком, они приобретают строгость, что и позволяет применять их в научном мышлении.
С физической точки зрения гораздо выгоднее сказать, что скорости двух шаров, движущихся в различных направлениях, различны. Хотя это – дело чистого соглашения, но гораздо удобнее сказать, что четыре автомашины, едущие из одного и того же пункта по различным дорогам, имеют не одну и ту же скорость, даже если численно скорости, зарегистрированные на их спидометрах, все равны сорока километрам в час. Это различие между скоростью, взятой по абсолютной величине, и скоростью, в которой учитывается направление, иллюстрирует, как физика, отправляясь от понятия, употребляемого в повседневной жизни, изменяет его таким путем, который оказывается плодотворным в дальнейшем развитии науки.
Если величина измерена, то результат выражается некоторым числом единиц. Длина отрезка может быть равна 3 метрам 7 сантиметрам, вес некоторого объекта равен 2 килограммам 3 граммам, измеренный промежуток времени – стольким-то минутам или секундам. В каждом таком случае результат измерения выражается числом. Однако одного только числа недостаточно для описания некоторых физических понятий. Признание этого факта отмечает значительный успех в научном исследовании. Направление, так же как и число, существенно, например, для характеристики скорости. Такая величина, обладающая и числовым значением и направлением, называется вектором. Обычный символ для него – это стрелка. Скорость может быть представлена стрелкой или, короче говоря, вектором, длина которого в некоторой избранной шкале единиц выражает численное значение скорости, а направление которого есть направление движения.
Если четыре автомашины расходятся с численно одинаковой скоростью из одного пункта, то их скорости могут быть представлены четырьмя векторами одинаковой длины, как это видно на рисунке 1. В избранной шкале один сантиметр представляет сорок километров в час. Таким путем любая скорость может быть обозначена вектором и, наоборот, если известна шкала, то из такой векторной диаграммы может быть установлена скорость.
Рис. 1.
Если две автомашины проходят по автостраде мимо друг друга и их спидометры показывают сто километров в час, то мы характеризуем их скорости двумя различными векторами со стрелками, заостренными в противоположных направлениях (рис. 2).
Рис. 2.
Точно так же и стрелки, указывающие направление «в город» и «из города» в нью-йоркском метро, должны быть заострены в противоположных направлениях. Но все поезда, идущие в город с численно равной скоростью, имеют одинаковую скорость и по направлению, которая может быть представлена одним и тем же вектором. Однако вектор ничего не говорит о том, какую станцию поезд проходит или по какому из многих параллельных путей он идет.
Рис. 3.
Другими словами, согласно выбранному условию все такие векторы (рис. 3) можно считать равными: они лежат либо вдоль одной и той же линии, либо вдоль ей параллельных и имеют стрелки, заостренные в том же самом направлении. Следующий рисунок показывает различные векторы, ибо они отличаются либо по длине, либо по направлению, либо по тому и другому вместе. Те же самые четыре вектора можно нарисовать другим путем, так, чтобы все они расходились из одной точки (рис. 5). Так как исходная точка несущественна, то эти векторы могут представлять скорости четырех автомашин, движущихся из одного пункта, либо же скорости четырех автомашин в различных частях страны, путешествующих с указанными скоростями в указанных направлениях.
Рис. 4.
Рис. 5.
Это векторное представление можно применить к описанию обсуждавшихся ранее фактов прямолинейного движения. Мы говорили о тележке, движущейся равномерно по прямой и получающей толчок в направлении ее движения, который увеличивает ее скорость. Графически это можно представить двумя векторами: коротким, обозначающим скорость до толчка, и длинным, имеющим то же направление и обозначающим скорость после толчка (рис. 6). Значение пунктирного вектора ясно. Он представляет собой изменение скорости, вызванное толчком. В случае, когда сила направлена против движения и движение замедляется, диаграмма выглядит иначе (рис. 7). Пунктирный вектор опять соответствует изменению скорости, но в этом случае его направление иное. Ясно, что не только сами скорости, но и их изменения – тоже векторы. Но всякое изменение скорости вызвано внешней силой; следовательно, и сила должна быть представлена тоже вектором. Для того чтобы характеризовать силу, недостаточно установить, с каким усилием мы толкаем тележку; мы должны также сказать, в каком направлении мы толкаем. Сила, как и скорость и ее изменение, должна быть представлена вектором, а не только одним числом. Поэтому внешняя сила – это тоже вектор, который должен иметь то же направление, что и изменение скорости. На обоих рисунках пунктирные векторы показывают как направление силы, так и изменение скорости.
Рис. 6.
Рис. 7.
Здесь скептик может заметить, что он не видит никакого преимущества от введения векторов. Все, что было сделано, – это перевод признанных ранее фактов на необычный и сложный язык. В этой стадии, в самом деле, было бы трудно убедить скептика, что он неправ. Пока он действительно прав. Но мы увидим, что именно этот странный язык приводит к важным обобщениям, в которых векторы оказываются существенными.