Tasuta

Искусственные внешние ресурсы для освоения космоса

Tekst
Märgi loetuks
Šrift:Väiksem АаSuurem Aa

Глава II. Околоземное пространство и Луна

5. В начале скажу про иностранную разработку, которая меня пугает:

Графеновая "паутина" для торможения низколетящих спутников.

Идея не моя, но очень опасная: НАСА разрабатывает уже несколько лет, а японцы, по-видимому, начали разработку технологии лет 30 назад, но очень удачно прикрыли реальную цель разговорами про "орбитальный лифт". На самом деле, вытянуть "на ниточке" что-либо из земной атмосферы в космос очень трудно, а вот затормозить на пару сотен метров в секунду и стянуть вниз – вполне реально.

Достаточно прицепить к спутнику на низкой орбите длинную тонкую ленточку или пучок нитей, толщиной в 1 нм, при длине в десятки-сотни километров, и общим весом в один грамм, чтобы эффективная площадь взаимодействия с молекулами газа возросла до сотен м2, что приведёт к уменьшению срока жизни спутника на орбите в сотни раз. (Помимо этого, может также генерироваться и значительный электрический потенциал).

Несколько тонн такой гадости на круговой орбите высотой до 300 км может за пару недель уничтожить всю ближайшую к Земле спутниковую группировку. Облако такой "паутины" будет довольно быстро дрейфовать на более низкие орбиты, по пути налипая на всё что движется. Эффективность почти как у космического ядерного взрыва, но безопасно для людей, экологически чисто, можно применить локально и настроить таймер для чистой самоликвидации (время испарения в вакууме).

При большой концентрации что-то подобное может применяться и в верхних слоях атмосферы для перехвата самолётов, гиперзвуковых и даже баллистических ракет на взлётном участке траектории. Правда, чем меньше высота и больше плотность воздуха, тем более толстые, либо более короткие нити придётся использовать, в намного большем количестве по массе, и на высотах меньше 40-50 километров эффективность применения сомнительна. Но отклонить траекторию ракеты на высотах 70-100 км можно.

Перехватить так боеголовку МБР на участке снижения всё-таки почти невозможно, в основном благодаря горячей ударной волне перед ней.

Но при скоростях менее 5 км/с и высотах 70-100 км, в особенности на взлётном участке траектории, любые ракеты и аппараты уязвимы для такого перехвата. Для этого потребуется всего от 1 до 10 кг нитей или сетки на кубический километр воздуха, при толщине нитей 10 мкм (для высоты 70 км при прочности материала 10 ГПа). Имея всего 10 тонн такой сетки, можно "закрыть небо" от гиперзвуковых аппаратов и ракет малой дальности над отдельным городом или авианосной группой, или по крайней мере неприемлемо снизить точность наведения; а несколько тысяч тонн позволят сделать небо "липким", или даже "твёрдым", над целым регионом, либо можно создать локальный вертикальный или горизонтальный барьер, при прохождении которого любой аппарат цепляет на себя несколько килограммов нитей длиной до 1 км, которые могут создать силу торможения в несколько тонн. При этом время нахождения таких нитей в стратосфере может измеряться многими сутками, или даже быть бесконечным.

Разрушить такую преграду можно, и даже не трудно, но для этого надо заранее принять соответствующие конструктивные меры. (например, "тупые" боеголовки в этом отношении лучше конических, так как создают более горячую ударную волну). Обнаружить наличие такой преграды дистанционно тоже можно, но это тоже надо предусматривать заранее. В крайнем случае, стратосферный ядерный взрыв может локально решить эту проблему.

Дальше идеи мирные, и где-то полезные, хотя и не все оригинальные:

6. Орбитальная заправочная станция для приёма топлива с Земли (в капсулах или в замороженном виде). Идея конечно не моя, ей лет 150 или больше. Здесь только анализ возможных вариантов.

В первом приближении, всё выглядит крайне просто: над Землёй (желательно вдоль экватора) на высоте 180-200 км летит одна или несколько орбитальных станций; на поверхности земли (или в стратосфере, мы уже знаем как это сделать) расположена одна, или целая цепочка, катапульт, которые "подбрасывают" вверх топливные брикеты или капсулы, а орбитальная станция их ловит.

Есть разные варианты, прежде всего, по скорости запуска топливных капсул. Проще всего подбрасывать их просто вверх со скоростью 2 км/с, так чтобы в точке рандеву они имели нулевую скорость относительно Земли; но тогда скорость встречи со станцией будет большой, более 7 км/с, и потребуются, во-первых, сложные устройства для приёмки; и, во-вторых, что более существенно, большой избыточный импульс, передаваемый станции, придётся компенсировать, затрачивая на это топливо, имеющееся на борту; причём, топлива надо затратить хотя бы вдвое меньше, чем получено, а значит, удельный импульс двигателя на борту станции должен быть не менее 15 км/с, что потребует ионного двигателя с большой тягой и мощными источниками энергии, или большими солнечными батареями.

Более привлекателен вариант катапультирования топлива с Земли сразу с I космической скоростью, так чтобы скорость встречи со станцией составляла сотни метров в секунду. Тогда упрощается конструкция приёмного устройства на борту, и передаваемый импульс можно компенсировать, сжигая небольшую часть полученного топлива в обычном ракетном двигателе. Но в этом случае усложняется конструкция и увеличивается вес наземных устройств.

Компромиссный вариант может предполагать запуск груза с промежуточной скоростью, 5-6 км/с, и приём на борт со скоростью 2-3 км/с. В этом случае на компенсацию недостающего импульса затрачивается примерно половина получаемого с Земли топлива.

Основным фактором для выбора варианта доставки является устройство для приёма топлива на борт и его возможности. При скорости сближения от 100-200 до 1500-2000 м/с можно использовать механические ловушки вроде сачка из тонкой сетки, большим плюсом которых является не только простота конструкции, но и очень большая (почти неограниченная) площадь приёмного отверстия, которое может быть действительно большим (десятки-сотни метров в диаметре, почти без увеличения массы).

Для такого варианта потребуются катапульты или пушки с большой начальной скоростью снаряда, до 7-8 км/с, но зато требования к точности очень небольшие, достаточно попадать с дистанции 500-1000 км примерно в футбольное поле.

Варианты с меньшей начальной скоростью снаряда (и соответственно большей скоростью приёмки на борт) кажутся проще, но это не так. При скорости встречи более 2 км/с уже не удастся использовать большой сачок, и придётся применять какой-то вариант активной "обратной катапульты" – газовые поршневые устройства типа пушки, или "магнитные пружины", утилизирующие кинетическую энергию снаряда. Эти устройства не только имеют большую массу, но и очень требовательны к точности попадания и входа в них снаряда, вплоть до десятков сантиметров. Это можно сделать; но всё же намного проще такие же по массе устройства разместить на Земле или в стратосфере, и запускать топливные капсулы сразу со скоростью 7-8 км/с, а ловить большим сачком. Это снимает проблему точности попадания, снимает проблему компенсации импульса, и делает бортовые устройства простыми по конструкции и лёгкими.

Для высоких орбит, или тем более для отправки топливных капсул на очень большие расстояния, через межпланетное пространство, всё же потребуются устройства и способы корректировки траектории снарядов с очень большой точностью, в том числе в промежуточных точках. Это можно будет сделать, с неограниченной точностью, до сантиметров, и на любое расстояние, до сотен миллионов километров; но для низкой околоземной орбиты такие сложные способы доставки пока не требуются.

Можно создать устройства для приёма на борт топливных капсул и грузов при скорости в десятки км/с, либо непосредственно использовать топливные заряды в двигателе; есть разные варианты, как это сделать, но мы поговорим об этом позже, в главе про термо-, газо- и магнитно-кинетические двигатели с внешним топливом.

Если в ближайшем будущем будут созданы лёгкие и эффективные высокоскоростные электромагнитные или газовые пушки с массой снарядов порядка граммов и начальной скоростью более 20 км/с, то в околоземном пространстве можно будет развернуть систему лазерной корректировки траекторий микро снарядов, позволяющую попасть в <монетку> сопло ракеты или приёмное устройство на расстоянии в миллионы километров. В принципе, это частично снимет проблему освоения ближайших планет.

7. Моя, вполне оригинальная идея; во всяком случае, за 20 лет я нигде не нашёл упоминаний. Хотя, вероятно, китайцы по тихому разрабатывают, потому что через 5-10 лет это станет необходимостью:

"Лунный парашют": разные варианты систем бестопливной посадки на Луну и безатмосферные планеты. В зависимости от скорости, возможны варианты на тросах и ленточках, пыли, газовых и электромагнитных устройствах, практически на любой бюджет, скорость и грузопоток.

Для Луны, это вполне актуально, и вполне доступно для реализации при существующем уровне техники.

При посадке на Луну ракета имеет начальную скорость 2500 м/с, и при торможении двигателем затрачивает 50% своей массы, причём эта масса стоит весьма дорого. Для регулярной доставки грузов система безракетной посадки окупится достаточно быстро.

Для других безатмосферных тел Солнечной системы – комет, астероидов, Меркурия и спутников планет – это тоже возможно, но сложнее из-за большей скорости. При этом, помимо торможения с целью посадки, можно использовать местные ресурсы небесных тел для маневрирования с целью изменения траектории движения, и даже для разгона.

7.0 Самый дешевый вариант: пылевой "лунный парашют" на местном грунте.

Принцип крайне простой: создать на небольшой высоте над поверхностью плотное протяжённое облако пыли, при вхождении в которое со скоростью до 2-3 км/с аппарат сможет тормозить либо прямо корпусом, либо с помощью специального устройства, подобного парашюту.

 

Если траектория ракеты будет направлена по касательной к ровному протяжённому участку поверхности или склону, то путь торможения может иметь длину в десятки километров, и при этом проходить на высоте в десятки метров над поверхностью, что позволит практически без затрат в нужный момент поднять на эту высоту большую массу пыли или грунта.

Недостатком такого способа является низкая эффективность передачи импульса по отношению к массе используемого рабочего тела (пыли), поскольку после столкновения с корпусом пылинки останавливаются, и по мере торможения удельный импульс рабочего тела будет снижаться.

Такой способ торможения будет эффективным только в ограниченном диапазоне скоростей, примерно от 0,2 до 2 км/с, так как при малой скорости рабочее тело даёт очень малый удельный импульс; а при очень большой будет быстро нагреваться и разрушаться рабочая поверхность.

"Поднимать пыль" в нужный момент можно разными способами. Технически проще всего заранее установить на поверхности ряд небольших автономных устройств, типа маленького экскаватора, который будет заблаговременно заготавливать необходимое количество пыли, и в момент пролёта ракеты над ним подбросит её вверх на высоту 10-100 метров с помощью механического устройства типа ленточного транспортёра или газового метательного устройства. В общем, лунный аналог земснаряда. Производительность таких устройств может быть достаточно большой, так что масса используемой пыли может в десятки-сотни раз превышать массу самих устройств на поверхности, и такая система может быть достаточно лёгкой и дешёвой, чтобы окупиться уже за 1 посадку.

Минусом такой системы является, во-первых, необходимость предварительной доставки оборудования на поверхность, но по массе стационарных устройств этот вариант один из самых экономичных; масса оборудования на поверхности может быть в несколько раз меньше массы груза, принимаемого за 1 раз, а рабочее тело (пыль) имеется в неограниченном количестве, и может использоваться многократно.

Также необходимо наличие дополнительных элементов конструкции на самой ракете (собственно парашюта), но его масса будет на порядок меньше, чем масса топлива для ракетной посадки.

И, самый большой недостаток – это невозможность таким способом снизить скорость до 0, так что на последних 200-300 м/с этот способ всё же придётся комбинировать с другими – ракетным торможением (но это потребует в 10 раз меньше топлива), либо с механическими (тросовыми) системами финиширования.

В целом, это дёшево и эффективно. Коммерческая прибыль может равняться половине стоимости всех доставляемых на Луну грузов.

7.1 Модификация варианта с пылью, но без каких-либо устройств на поверхности: почему бы ракете самой не поднимать пыль впереди себя, с помощью бортовых устройств.

Для Луны это не очень актуально, так как в данном случае проще 1 раз установить стационарную систему; но при разовой посадке на какой-нибудь далёкий астероид или комету, неплохо было бы обойтись без предварительной доставки грузов на поверхность.

Это можно сделать разными способами, в зависимости от имеющихся бортовых энергетических ресурсов, внешних ресурсов, и скорости.

Самый простой и универсальный, но энергетически затратный способ – испарять кометный грунт с помощью лазера или другого энергетического воздействия, и тормозить в получившемся облаке пыли и газа. Энергии надо много, но по удельному импульсу будет всё же лучше ракетного двигателя.

Возможна интересная модификация, когда при движении в уже существующем разреженном облаке естественной или искусственной пыли (кометном хвосте, например), с помощью дистанционного энергетического или силового воздействия пылинки не испаряются, а собираются в нужное место, чтобы повысить их концентрацию.

Также возможна модификация, когда вместо энергетического луча используются микро снаряды, выстреливаемые с борта ракеты вперёд, которые при взрыве испаряют или поднимают грунт с поверхности.

Возможен также вариант, когда предварительное энергетическое воздействие оказывает не сам аппарат, который надо затормозить, а летящий на некотором расстоянии впереди него "лидер". В частности, это может быть отдельный модуль, привязанный к большой ракете тросом. Либо наоборот, ракета летит впереди, а парашют на длинном тросе позади неё.

Возможен и совсем экзотический вариант, когда аппарат не тормозит, а разгоняется за счёт внешних ресурсов. Но в этом случае потребуется затрата бортовых энергетических ресурсов, и, возможно, бортового запаса топлива, хотя удельный импульс может быть больше, чем при прямом использовании топлива в ракетном двигателе.

7.2 Механические (тросовые) системы торможения и ловушки.

Самый простой вариант – сбрасывать всё, что можно расфасовать в виде небольших капсул (замороженное топливо, кислород, воду и т.д.), и ловить сачком. В принципе, для скорости 2,5 км/с это возможно.

Более крупные грузы и аппараты тоже можно тормозить с помощью троса, даже при скорости 2,5 км/с и более (при прочности троса 10 ГПа, и плотности материала 3 г/см3).

При этом возможно множество вариантов: во-первых, по месту нахождения троса до использования – на борту ракеты или на поверхности. Размещение на поверхности и многократное использование троса предпочтительнее для серийного грузопотока, но для однократной посадки возможен и вариант использования бортового устройства типа якоря.

Во-вторых, есть разные способы силового взаимодействия троса с ракетой и поверхностью. Самый простой вариант – выстреливать конец троса с поверхности и цеплять за низко летящую ракету, а затем пассивно разматывать остальной трос из бухты. При этом импульс ракеты частично передаётся массе троса по мере увеличения его длины, а затем, после снижения скорости в 2-3 раза, можно дополнительно тормозить трос внешней силой. При этом точка приложения этой силы неподвижна относительно поверхности, что позволяет использовать для торможения простое стационарное устройство типа лебёдки с тормозом.

Недостатком такого способа является большая масса троса и устройств на поверхности – в несколько раз больше массы ракеты, так что он проигрывает варианту с пылью. Но можно модифицировать этот вариант таким образом, что трос имеет небольшую длину и массу, а точка приложения тормозящей силы к концу троса перемещается относительно поверхности. Это сложнее сделать, но в этом случае масса стационарных устройств может быть уменьшена.

Вариантом такого способа торможения может быть разновидность якоря, сбрасываемого с борта ракеты, конец которого тем или иным способом, контактно или дистанционно взаимодействует с грунтом на поверхности, или со специально подготовленной поверхностью (посадочной полосой, рельсом, жёлобом, неподвижным тросом и т.д.)

7.3 Отдельной разновидностью механических способов торможения является прямое торможение корпусом о предварительно подготовленный грунт при жёсткой посадке по касательной к поверхности. В принципе, для скорости 2,5 км/с это можно осуществить без разрушения аппарата, но потребуется очень прочный и массивный корпус, либо дополнительные затраты на подготовку поверхности. Но такие варианты тоже надо рассматривать, при определённых условиях посадка на специальную поверхность (посадочную полосу) при скорости 2-3 км/с может оказаться возможной, и менее затратной, чем другие варианты.

Более эффективным будет вариант торможения по предварительно подготовленной поверхности специальными устройствами (полозьями, шасси, магнитными катушками), что позволит снизить вес дополнительных бортовых устройств до нескольких процентов от массы ракеты; при этом потребуется строительство и подготовка специальной посадочной полосы или рельса, но в целом этот вариант может оказаться более эффективным, чем "пылевой", хотя и более затратным по массе стационарных устройств.

В целом, для серии из очень малого числа посадок (1-10) я бы предложил всё же пылевой вариант с окончательным торможением двигателем; это требует минимальной предварительной подготовки, и позволяет относительно свободно маневрировать при заходе на посадку.

Для больших серий и постоянного грузопотока лучше всё-таки построить посадочную полосу со специальным покрытием для контактного или магнитного торможения, возможно с предварительным сбросом скорости другими способами.

7.5 Активные электромагнитные системы торможения.

Самый дорогой при строительстве и эксплуатации вариант. При отсутствии фантазии, может потребовать колоссальных вложений в разработку и сооружение, до 12-значных цифр. Очевидно, именно по этой причине его выберут китайцы – ведь университетам надо с чего-то кормиться в течении десятилетий… и не важно, что альтернативный вариант мог быть разработан пятью студентами за месяц, и доставлен в одном чемодане.

8. "Лунный самолёт": спутник на низкой орбите, который может без использования топлива произвольно маневрировать: отклоняться от траектории на километры – десятки километров, при необходимости с большой точностью следуя за рельефом местности на сверх малой высоте, до метров; "нырять" вниз, менять скорость полёта вплоть до полной остановки, и даже подхватывать грузы с поверхности или на небольшой высоте над ней. Можно использовать для фотографирования поверхности с большим разрешением, взятия проб грунта, или подъёма грузов с поверхности (младший брат орбитального лифта).

На самом деле, это не один спутник, а два (или больше), связанные длинным тросом и вращающиеся вокруг общего центра масс. Понятно, что бесплатных чудес не бывает, и центр масс будет двигаться по обычной круговой орбите. (Устойчивость круговых орбит вокруг Луны – это отдельная тема, но в данном случае эту проблему можно решить).

При отношении масс 1:5 или более, массивное тело будет лететь практически по постоянной орбите, но более лёгкая часть будет описывать сложную траекторию, в виде спирали или растянутой циклоиды, в некоторые моменты приближаясь к поверхности, насколько позволяет длина троса. При этом длина троса может быть очень большой: лимитирующим фактором для такой системы будет не максимальное расстояние между компонентами, а их относительная линейная скорость. При прочности троса из углеродного волокна в 10 ГПа, скорость может достигать 2-3 км/с, что превышает скорость движения по низкой круговой орбите (1,7 км/с), так что в моменты максимального приближения к поверхности спутник может быть почти неподвижен относительно неё, или даже двигаться назад.

При этом период обращения компонент вокруг центра масс не обязательно должен быть постоянным – трос можно втягивать или вытягивать лебёдкой на более массивном спутнике, изменяя его длину, и соответственно линейную скорость и период обращения компонент, что позволит изменять амплитуду и период, получая сложные траектории.

Таким способом можно как спускать грузы на поверхность, так и поднимать с неё (почти) без затрат топлива. Для окололунной орбитальной станции такой лифт вполне реален, в отличие от Земли.

9. Локальные транспортные системы для Луны и безатмосферных планет (перемещение грузов до 1000 км и разведка поверхности).

9.1 Катапультные системы доставки: самый быстрый и экономичный способ доставить груз из точки А в точку Б, что на Земле почти невозможно из-за наличия атмосферы.

При скоростях 100-200 м/с и дальности перевозки 5-10 км можно использовать механические системы для разгона и торможения; при скорости 200-500 м/с газопоршневые (без затрат газа, который на Луне может быть относительно дорог), а при скорости 500-1500 м/с газовые пушки, и для финиширования механическую тросовую систему или сачок.

Недостатком таких систем является большое ускорение (1000-10.000 g), что исключает перевозку хрупких грузов и пассажиров.

9.2 Лунный вертолёт. Да-да.

Можно построить катапульту или пушку, столь длинную, что ускорение при влёте и посадке будет менее 1 g. Собственно, зачем себя ограничивать, мы можем вообще построить настолько длинную пушку, что её ствол протянется вдоль всей траектории движения от точки А к точке Б, на 1000 км, и пассажирам вовсе не придётся покидать её.

Но это дорого.

Придётся всё же немного подумать.

Привяжем к вагончику с пассажирами массивный груз (пусть отношение масс будет 1:1) на длинной резинке (по научному говоря, на упругом тросе из резины, с предельной энергией растяжения 10 кДж/кг). Собственно, сама резинка может выполнять и роль груза.

Выстрелим груз (или просто саму резинку) вверх со скоростью 200 м/с.

На Луне она бы улетела километров на 10 вверх или 20 по горизонтали, но к ней привязан вагончик с пассажирами. Тем не менее, растянувшись, резинка начнёт поднимать его, с небольшим ускорением, которое зависит от длины и других параметров резинки. Можно подобрать параметры так, что взлёт произойдёт с любым нужным нам ускорением, при этом максимальная скорость вагончика может достигать 100 м/с, время полёта до 100 секунд, максимальная высота 2-3 км, и дальность по горизонтали 5-6 км.

 

Собственно, можно подобрать параметры так, что полёт вагончика будет происходить на небольшой высоте, и практически горизонтально. Для этого лучше использовать несколько резинок разной длины и жёсткости, с грузами, выстреливаемыми в разных направлениях. Одна, длинная и не очень жёсткая резинка постоянно тянет вверх с почти нулевым ускорением, а вторая, более жёсткая, выстреливается почти горизонтально, и вначале полностью передаёт свой импульс грузу, разгоняя его в горизонтальном направлении, затем отстаёт от него, и потом снова тормозит его до 0 в момент посадки. Это позволит построить полностью автономный аппарат, который, безо всяких стационарных устройств на поверхности, поднимает сам себя за волосы, переносит с небольшим ускорением в нужное место, и аккуратно опускает на поверхность с нулевой скоростью.

Максимальная дальность полёта такого аппарата ограничена энергетическими параметрами резинки, и для обычной резины составит несколько километров. Разгон грузов можно осуществлять газо-поршневыми или мембранными устройствами, что позволяет получить скорость до 1 км/с. При хорошем управлении системой, грузы и тросы могут точно возвращаться к аппарату, в устройство для финиширования и повторного запуска.

Такая машина может более 90% времени находится "в воздухе", и примерно минуту лететь на небольшой высоте с горизонтальной скоростью до 100 м/с, через каждые 5 км прилуняясь на несколько секунд для передачи поверхности лишнего импульса в момент повторного запуска грузов.

Слабым местом такой машины будет ограниченная дальность одного прыжка (до 5 км), но экономичность может быть очень высокой, особенно при утилизации и повторном использовании кинетической энергии.

9.3 Лунный вертолёт с увеличенной дальностью полёта (тип II).

Максимальная упругая энергия, которую может накопить резинка, является лимитирующим фактором для высоты и дальности полёта. Но мы можем распределить функции накопления, передачи и преобразования кинетической энергии между несколькими отдельными устройствами таким образом, чтобы повысить общую эффективность и энерговооружённость системы в десятки-сотни раз.

Собственно, все устройства в такой системе выполняют всего 4 функции:

1) начальная подача энергии в систему – осуществляется катапультой или метательным устройством, разгоняющим груз;

2) накопление кинетической энергии – осуществляется массой груза;

3) силовая передача энергии от летящего груза к ускоряемому аппарату – осуществляется тросом посредством механической силы натяжения;

4) преобразование половины кинетической энергии в другую форму – может осуществляться по-разному, как обратимо (в упругую энергию), так и просто рассеиваться в тормозном устройстве (но тогда труднее обеспечить мягкую посадку, и дальность полёта уменьшится вдвое).

В самом первом варианте (металлический грузик на резинке), функции 3 и 4 совмещены, собственно, в резинке, которая и передаёт усилие, и обратимо запасает лишнюю энергию.

В варианте с резинкой, которая сама выполняет также и функцию грузика, она совмещает уже три функции – 2, 3 и 4, и только придание ей начальной скорости выполняется другим устройством. Это хорошо в конструктивном смысле, но плохо с точки зрения энергии, так как способность материала к накоплению упругой энергии ограничена первыми десятками кДж/кг, и является тонким местом всей системы.

Помимо этого, упругость резинки при растяжении не постоянна и трудно управляема, что усложняет расчёт параметров и не позволяет грузу двигаться равномерно или с постоянным ускорением.

Поэтому мы уберём резинку. То есть, заменим её жёстким тросом. Преимущество этого в том, что трос при равной прочности намного легче резинки, что позволяет значительно увеличить его длину, а почти всю массу сосредоточить в виде дискретного груза на его конце, что улучшает энергетические параметры и упрощает расчёт траектории и управление.

Разматываясь под действием усилия натяжения, трос с прочностью 10ГПа (при плотности материала 2,5 г/см3) может передать на расстояние механическую энергию до 4 МДж/кг, в сотни раз больше, чем резинка. Но, он не может эту энергию запасти – только передать между двумя точками. Поэтому теперь потребуется отдельное устройство, которое эту энергию принимает, преобразует в другую форму, и (желательно) обратимо запасает.

В принципе, избыточную кинетическую энергию можно и просто рассеивать в тепло, пассивно тормозя трос с определённой силой во время его движения вверх вместе с грузом. Сила торможения, приложенная к движущемуся вверх тросу, будет поднимать аппарат независимо от того, преобразуется ли совершаемая работа далее в тепло, в химическую, упругую или электромагнитную энергию.

С силовой точки зрения, вариант с пассивным торможением троса не хуже других. Но если тормозное устройство сможет прикладывать силу к тросу только пока он движется вверх, и не будет потом активно тянуть груз обратно, получая дополнительный импульс во время его добавочного ускорения вниз, то полёт продлится меньше по времени и дальности. При этом уменьшится вес бортовых устройств, но увеличится расход энергии.

В более экономичном варианте, можно при движении троса вверх тормозить его устройством, обратимо переводящим энергию в другую форму для её последующего использования, например электрическую, химическую и т.д. Тогда, после достижения равенства скоростей груза и аппарата (минимума кинетической энергии), можно за счёт запасённой энергии ещё некоторое время тянуть груз вниз с ускорением, получая дополнительный импульс. Хотя, снова разгонять груз до максимальной скорости, видимо, не следует, так как тогда появится проблема утилизации кинетической энергии при возвращении груза на поверхность или в приёмное устройство, и общий расход энергии возрастёт.

Вероятно, самым экономичным будет вариант, когда при вытягивании троса вверх он тормозится "квазиупругим" устройством, типа обратимого электрического генератора, и высвобождаемая кинетическая энергия запасается, так же, как это было бы при использовании резинки; но потом, при втягивании троса обратно, лишь небольшая часть этой энергии снова передаётся грузу, (то есть усилие при втягивании груза обратно должно быть меньше, чем при его движении вверх). Тогда кинетическая энергия груза при его возвращении (на поверхность или аппарат) будет существенно меньше, и снимается проблема её почти мгновенной утилизации приёмным устройством (или потери при ударе о грунт).

Менее экономичным, но более простым технически, будет вариант, когда большая часть (или вся) энергия при торможении троса рассеивается механическим тормозом, но потом, при втягивании троса обратно, к нему прикладывается некоторая сила активным устройством (электродвигателем или обратимым генератором в режиме двигателя), для того, чтобы обеспечить управляемое втягивание и сматывание троса и возвращение груза в точно определённое место. При этом возвращающая сила может быть в несколько раз меньше, чем пассивная при торможении (аналог "плохой резинки" с большой диссипацией энергии).

При любом варианте, лучше иметь несколько грузов (2 или более), летящих под разными углами к горизонту, для обеспечения максимальной длительности, дальности и равномерности полёта, и мягкой посадки. Это позволит на протяжении всего полёта создавать необходимые по величине и направлению силы, и управлять движением грузов и самого аппарата.

В отличие от резинки, упругие свойства которой изначально заданы и их трудно регулировать, силу, приложенную к жёсткому тросу, можно мгновенно изменять, что позволит в любой момент создавать нужные по величине силы, и даже произвольно маневрировать в некоторых пределах.