Музыка и мозг. Как музыка влияет на эмоции, здоровье и интеллект

Tekst
12
Arvustused
Loe katkendit
Märgi loetuks
Kuidas lugeda raamatut pärast ostmist
Kas teil pole raamatute lugemiseks aega?
Lõigu kuulamine
Музыка и мозг. Как музыка влияет на эмоции, здоровье и интеллект
Музыка и мозг
− 20%
Ostke elektroonilisi raamatuid ja audioraamatuid 20% allahindlusega
Ostke komplekt hinnaga 9,72 7,78
Музыка и мозг
Audio
Музыка и мозг
Audioraamat
Loeb Стефан Барковский
5,40
Sünkroonitud tekstiga
Lisateave
Šrift:Väiksem АаSuurem Aa

ХММММ

Наши эмоции – предпосылка для развития интеллекта и способности быть частью общества. Когда эволюция усложнила наше общение, появились новые требования к умению поделиться собственными эмоциями и распознать чужие. Одновременно с этим усилилась потребность влиять на эмоции других членов группы. Современные обезьяны для этого используют мимику, жесты и звуки. Очевидно, у первых гоминидов была особенно развита звуковая коммуникация, и они имели богатый опыт выражения собственных и считывания чужих эмоций посредством вокализации. Вероятно, для этого они варьировали высоту тона, ритм и тембр голоса. Именно так появилась музыкальность и был заложен первый камень в фундамент нашего эмоционального отклика на музыку. Нашим предкам пришлось стать крайне эмоциональными, чтобы выжить. В отсутствие языка музыкальная коммуникация, видимо, стала важнейшим способом как выразить собственные чувства, так и вызвать эмоциональный отклик у сородичей. Так наш мозг развил чувствительность к звукам музыки.

Мозг неандертальцев, живших в Европе и вымерших примерно 40 000 лет назад, по размеру совпадал с нашим. Они охотились большими группами и, должно быть, могли как-то общаться. Они создавали совершенное каменное оружие и пользовались им, но у них не было ни наскальных рисунков, ни украшений, ни музыкальных инструментов для самовыражения. Будь у них вербальный или жестовый язык, наука обнаружила бы визуальные свидетельства этого. Хотя неандертальцы прожили на земле несколько тысяч лет, их развитие – как культурное, так и технологическое – в какой-то момент полностью остановилось. Что же послужило причиной? Как объяснить, что Homo sapiens, в отличие от них, оказались способны создать еще более совершенное оружие, наскальные рисунки, музыкальные инструменты и украшения примерно 50 000‒70 000 лет назад, а вероятно, и ранее?

У неандертальцев явно – в той или иной форме – существовала музыка. Видимо, они передавали эмоции и настроение, предотвращали и провоцировали конфликты, утешали и приободряли друг друга, инициировали половой акт и проявляли заботу с помощью довольно сложных звуков. Такая система звуковой коммуникации имеет много общего с музыкой. Благодаря ей для укрепления связей и выражения доверия друг другу неандертальцы вместе пели и танцевали. Коммуникация такого типа, скорее всего, была крайне необходима людям, которые группами охотились на гораздо более крупных и опасных существ, чем они сами, например на мамонтов. Британский профессор археологии Стивен Митен описывает эту протомузыкальную коммуникацию аббревиатурой ХММММ.

Холизм – речь, подобно музыке, состояла из цельных фраз, а не из отдельных слов.

Манипуляция – речь использовалась скорее не для передачи информации, а для того, чтобы манипулировать чужим поведением.

Мультимодальность – коммуникация велась с помощью и тела, и голоса.

Музыкальность – для выражения эмоций, проявления заботы к младенцам, демонстрации сексуального интереса и укрепления групповой сплоченности использовались различные вариации высоты тона, ритма и тембра голоса.

Мимичность – речь подражала звукам окружающего мира.

А потом зазвучала музыка

Homo sapiens появились в Африке примерно 200 000‒ 300 000 лет назад. Вероятно, сначала их общение напоминало коммуникацию неандертальцев. В какой-то момент развитие коммуникации пошло в двух непохожих, но родственных направлениях. Развиваться стали язык и музыка. Первые достоверные свидетельства тому были обнаружены в африканской пещере Бломбос: символические артефакты, осколки камней с надписями, огромное количество красной краски для рисунков на теле, украшения, такие как ожерелья из ракушек, и сложные инструменты из костей – всему этому минимум 70 000 лет. В этот период Homo sapiens уже развили способность выражаться абстрактно и общаться с помощью символов, которые не относятся к высказыванию напрямую. Их язык уже имел синтаксис и грамматику – именно благодаря им стала возможна точная передача информации. Язык был краеугольным камнем для развития технологий и во многом поспособствовал тому, что Homo sapiens за короткое время одержали верх над гоминидами.

А как же музыка? Она продолжила свое существование. Первые музыкальные инструменты – барабаны и флейты – появились 40 000‒50 000 лет назад, то есть одновременно с наскальными рисунками и другими формами искусства. С тех пор человека сопровождает музыка. Как и во времена неандертальцев, сейчас музыка – одно из самых эффективных средств для выражения эмоций, и она понятна всем. Музыка продолжает играть важнейшую роль в осознании себя частью целого – другими словами, объединяет. Это ее базовая функция, и она заложена глубоко в наших генах, биологии и мозге.

От волн в воздухе – к электричеству в мозге

Со стороны кажется, будто мозг – отшельник. Он устроился под защитой костей, которые мы зовем черепной коробкой. Там, внутри, тихо, темно и влажно. Но для нашего выживания, безусловно, необходимо, чтобы мозг в любой момент времени владел самой полной информацией о том, что происходит в окружающем мире, за пределами черепной коробки. Для этого у нас есть органы чувств.

С давних времен у человека выделяют пять чувств: вкус, обоняние, зрение, осязание и слух. Но в действительности все немного сложнее. Среди прочего у нас есть тактильные и температурные рецепторы в коже, проприоцепция – чувство, сообщающее о положении различных частей тела, а также чувство равновесия, благодаря которому мы понимаем, где верх, а где низ, и не падаем. Все это – информация о том, что происходит внутри тела и за его пределами.

Но органы чувств рассказывают нашему сознанию далеко не все. Они отфильтровывают многие данные, но за это мы должны быть благодарны. Каждую секунду наши органы чувств принимают миллионы сигналов – такое количество информации мы просто не в состоянии обработать. К тому же в окружающем мире есть явления, на которые наши органы чувств не реагируют, например радиоволны, химические реакции и электромагнитное излучение, – их мы просто не видим или не чувствуем. Но, несмотря на то, что наши ощущения – это лишь осколки имеющейся в мире информации, наш мозг выстраивает полную и цельную картину, без дыр и пробелов. И этого достаточно, чтобы ориентироваться в пространстве и реагировать на внешние условия. Такими нас сделала эволюция.

Одно из важнейших чувств – слух. Главным образом через него мы воспринимаем музыку. Однако это лишь часть правды. Ведь другие органы чувств тоже участвуют в формировании музыкального впечатления с помощью мультимодального восприятия. Поэтому в этой главе мы будем говорить не только о слухе (к нему мы вернемся позже). Прежде всего мы поговорим о том, как люди развили удивительную способность воспринимать звуки.

Первые слушатели

Первым появившимся на Земле слушателям – рыбам – ухо, подобное нашему, никогда не было нужно. Звуковые волны сквозь воду проходят напрямую в их тело (в составе которого тоже много воды), скелет и череп. В черепе рыбы есть маленькая наполненная жидкостью полость – в ней расположены волосковые клетки, которые преобразуют вибрации в электрические сигналы, а уже эти сигналы мозг воспринимает как звуки. Сначала низкочастотные волны лишь создавали вибрации в вестибулярном аппарате рыб, но информация, которую они несли, оказалась столь полезной, что для ее восприятия постепенно развилось отдельное чувство – слух. Остатки этого механизма сохранились в анатомии человека: вестибулярный аппарат и орган слуха – улитка (cochlea) – по-прежнему расположены глубоко в височной кости и тесно связаны друг с другом. А улитка, наш звукочувствительный орган, по-прежнему наполнена жидкостью. У примитивных рыб в органе, отвечавшем за восприятие звуков, жидкость тоже имелась.

Благодаря развитию ушей и слуха животные получили возможность получать информацию с определенного расстояния. Поэтому мы считаем слух дистантным ощущением. Слух круглосуточно улавливает информацию обо всем происходящем во внешнем мире. Зрение, напротив, в конкретный момент времени фокусируется на одном объекте или небольшой области. Кроме того, слух имеет дополнительную функцию: с его помощью мы можем не только следить за происходящим, но и общаться на расстоянии.

Звукочувствительные органы, позже превратившиеся в уши, в процессе эволюции появились поздно, гораздо позже других органов чувств. Поэтому мы можем утверждать следующее: даже если вибрации существовали в атмосфере с начала времен, на Земле было довольно тихо до поздних этапов эволюции (вплоть до периода, начавшегося примерно 500 миллионов лет назад). Ведь для физика звук является энергией, а для невролога это понятие связано с восприятием, или перцепцией, звука. Если бы у нас не было органов слуха и слуховых систем мозга, то звуковые волны для нас бы просто не существовали, как радиоволны или гамма-излучение – явления, лежащие за пределами восприятия наших органов чувств.

Примерно 350 миллионов лет назад, когда мы, еще будучи амфибиями, переселились на сушу, слух был устроен очень просто. Вначале звуки по-прежнему воспринимались как вибрации земли, передаваемые напрямую в череп через височно-нижнечелюстной сустав. У змей и сейчас только вот такой ограниченный слух. Поэтому, если вы гуляете босиком, громче топайте ногами – тогда гадюка вас точно не укусит.

Через несколько миллионов лет мы подняли голову от земли, и такой тип слуха стал неэффективен. Энергия проходящей по воздуху звуковой волны намного меньше, чем у волны в воде. Если вы стоите на земле и кричите кому-то, кто находится под водой, вероятность того, что вас услышат, очень мала. Воде передастся лишь около 1 % энергии. Все дело в том, что плотность воды намного больше, чем плотность воздуха. Поэтому, чтобы привести в движение молекулы воды, воздух должен двигаться весьма интенсивно.

 

Перейти из воздуха в наполненные жидкостью полости в нашем внутреннем ухе звуковой волне помогает барабанная перепонка, которая со временем развилась как отдельный звукочувствительный орган. Одновременно два образования, первоначально являвшиеся частью височно-челюстного сустава у амфибий и змей, отделились и превратились в молоточек и стремечко в нашем среднем ухе. Чуть позже мы поговорим об их функции подробнее.

Звук – это прежде всего движение

Мы привыкли думать, что звуки издают инструменты. Но на самом деле это не так. Инструмент – источник движения. Позже это самое движение станет в нашем мозге звуком. Возьмем, например, гитару: если ударить по струне, механическая энергия слегка удлинит ее. Упругость, которой обладает струна, будет возвращать ее в исходное положение, но благодаря исходной энергии струна пройдет первоначальное положение и снова удлинится – уже в другом направлении. Так она будет качаться из стороны в сторону, как маятник. И в какой-то момент струна, как маятник, остановится. Но энергия не исчезнет. При колебании струны из стороны в сторону происходит сжатие воздуха в направлении движения, а с обратной стороны образуется немного вакуума. Так механическая энергия струны передается воздуху – рождается звуковая волна, состоящая из попеременно уплотненного и разреженного воздуха, – и распространяется, словно круги по воде. Следовательно, звуковая волна – это не что иное, как ударная волна, передающаяся в физической среде, в нашем случае – в воздухе.

Скорость ее распространения зависит от среды и температуры. При температуре воздуха 15 ºС она составляет примерно 340 метров в секунду. В других средах это происходит быстрее. В старых вестернах можно нередко увидеть сцены: индеец прикладывает ухо к земле или к рельсу и с загадочным видом сообщает о приближении всадников или поезда. Объяснить это просто: в твердой среде, такой как земля или камень, звук движется быстрее, чем в воздухе. Поэтому по земле топот лошадиных копыт разносится быстрее, чем по воздуху.


Когда энергия звуковой волны от гитарной струны достигает нашей головы, сначала она попадает во внешнее ухо, которое называют ушной раковиной. Этот нарост на внешней стороне черепа улавливает и усиливает звуковые сигналы, особенно те, которые ближе к верхней границе частотного диапазона. Поэтому ухо весьма чувствительно к частотам человеческого голоса. Не в последнюю очередь из-за этого мы лучше слышим согласные и с их помощью проводим границы между словами. Без высокочастотных согласных мы воспринимали бы речь как бесконечный связный поток гласных и не смогли бы отделить одно слово от другого. Поэтому звуковые помехи так усложняют понимание речи: как правило, они затрагивают именно эти частоты.

Из ушной раковины звуковые волны попадают в наружный слуховой проход. Он устроен так, что усиливает частоты, присущие человеческому голосу: канал сначала слегка сужается, а затем, ближе к барабанной перепонке, снова расширяется. Форма внешнего уха и слухового прохода способствует тому, что по пути от ушной раковины до барабанной перепонки давление звуковых волн увеличивается в 10 раз.

От энергии движения – к электрической энергии

На пути к нервной системе энергия гитарной струны перед тем, как стать электрической энергией, преобразуется сначала в волны в воздухе, затем в механическую энергию, а потом в волны в жидкости. Вот как это происходит.

Когда звуковые волны доходят до барабанной перепонки, она начинает двигаться, как кожа на барабане, когда по нему бьют палочками. Это, в свою очередь, запускает движение косточки, расположенной с внутренней стороны барабанной перепонки, – молоточка, или по-латыни malleus. Молоточек прикреплен еще к одной косточке, которую называют наковальней, или incus. А наковальня крепится к последней слуховой косточке – стремечку, или stapes. Поверхность стремечка – это лишь 1/16 часть поверхности барабанной перепонки. Таким образом, вся энергия переходит с барабанной перепонки в крошечную область – и потому возрастает во много раз. Кроме того, слуховые косточки усиливают звук, поэтому во внутреннем ухе энергия фокусируется еще лучше. Благодаря всему этому механическая энергия звуковой волны переходит во внутреннее ухо более эффективно. Человеческое ухо воспринимает колебания, размер которых не превышает диаметр одного атома водорода (наименьшего из атомов из всех химических элементов). Уму непостижимо! Так же невероятно, что наши уши продолжают работать на рок-концерте или возле работающего двигателя самолета: там уровень звукового давления составляет примерно от 130 до 140 децибел, что по силе в триллион раз превосходит порог слышимости – один децибел.



Косточка, расположенная из перечисленных глубже всего, – стремечко – прикреплена к овальному окну, напрямую связанному с улиткой (cochlea). Улитка – это система каналов, наполненных жидкостью и образующих почти три полноценных витка. Система разделена на три полости, которые, соответственно, называются барабанная лестница, средняя лестница и лестница преддверия. Когда барабанная перепонка в слуховом канале колеблется под воздействием звуковой волны, стремечко бьет по овальному окну, как бы ставя на него печать. Так энергия переходит в волны в жидкости (эндолимфе) во внутреннем ухе. От стремечка ударная волна идет через первый канал, барабанную лестницу, к самой вершине улитки – а затем в следующий канал, лестницу преддверия, к круглому окну. Как и волны в воздухе, волны в эндолимфе имеют разную длину. Представьте, что вы вытряхиваете коврик. Если вы трясете его быстро (с высокой частотой), волны будут короткими и плотными, а если медленно, их длина увеличится.

В улитке есть чувствительные органы, реагирующие на различные частоты колебаний жидкости во внутреннем ухе. Вместе они называются Кортиев орган. Каждый из них состоит из двух слоев так называемых волосковых клеток, прикрепленных к желеобразной текториальной мембране. Параллельно ей вдоль всего канала идет базилярная мембрана. Когда колебания эндолимфы смещают относительно друг друга базилярную и текториальную мембраны, волосковые клетки в Кортиевом органе движутся. Это открывает ионные каналы волосковых клеток и стимулирует соответствующие нервные клетки – они подают электрический сигнал. Нервные клетки всех волосковых клеток Кортиева органа образуют слуховой нерв – он передает сигналы дальше.

Базилярная мембрана настроена следующим образом: у входа она более узкая и натянута сильнее, чем в кончике улитки. Поэтому высокие тоны дают резонанс ближе к выходу – мембрана при этом колеблется, в то время как низкие тоны дают резонанс ближе к вершине, где базилярная мембрана шире и натянута слабее. За каждую частоту отвечает отдельная область мембраны, из-за чего она напоминает клавиатуру: волны, соответствующие высоким, или высокочастотным, тонам, посылают электрические сигналы у входа, а волны, соответствующие глубоким басовым тонам, – на вершине улитки. Позже мы увидим, что такую организацию высоких и низких тонов (она называется тонотопия) можно наблюдать вплоть до самой слуховой коры мозга.

В длину улитка составляет примерно 3,2 см и содержит около от 16 000 до 20 000 волосковых клеток. Они передают информацию в мозг посредством 32 000 нервных волокон, расположенных в слуховом нерве. Для сравнения: в сетчатке глаза около 100 миллионов сенсорных нейронов – от них информация переходит в нервные волокна (их около миллиона) зрительного нерва. Однако разница в цифрах ничего не говорит о том, какие впечатления и эмоции возникают в мозге благодаря этим органам. Спросите любителей музыки, и большинство из них уверенно ответит, что улитка – гораздо более важный орган.


Улитка – не просто пассивный слушатель

В улитке есть собственная система контрастного усиления – она помогает различать близкие друг к другу частоты. Звуковые волны, как и все прочие волновые сигналы, имеют пик. Волосковая клетка, расположенная на пике волны в базилярной мембране, стимулируется активнее, чем соседние. Однако соседние клетки также подвержены воздействию. Из-за этого мог бы начаться полный хаос, но природа создала умный механизм. Волосковая клетка не только отсылает сигнал «своей» клетке в слуховом нерве, но и приглушает соседние, сообщая: «Я распознала тон. Не волнуйтесь, я расскажу о нем мозгу». Таким образом, пик волны как бы становится еще выше, чем он есть на самом деле, и мозгу проще отделить друг от друга близкие тоны и частоты. Контрастное усиление делает работу органа слуха более четкой – мозг способен различить два тона, у которых волосковые клетки, отвечающие за работу с ними, находятся на базилярной мембране на расстоянии 0,02 мм друг от друга. А всего ухо различает около 1500 различных тонов. Такой тип контрастного усиления называется латеральной ингибицией, она наблюдается и в зрачке.

В ухе имеется и механизм для приглушения звука. В среднем ухе расположены две небольшие мышцы: стременная мышца и мышца, напрягающая барабанную перепонку. Они натягивают соответственно стремечко и барабанную перепонку, чтобы приглушить поступающие звуки и защитить ухо от слишком громких звуков. Стременная мышца – самая маленькая мышца тела – длиной не более миллиметра. Однако она играет очень важную роль. Если эта мышца парализована, возникает мучительная болезнь, называемая гиперакузией, – при ней даже обычные звуки воспринимаются как неприятно громкие.

Упомянутые мышцы выполняют еще одну важную функцию: приглушают для нас звук нашего голоса, когда мы говорим или поем, а также звуки, которые мы издаем во время жевания. Звук нашего голоса достигает ушей не только снаружи, как другие звуки, но и напрямую, посредством вибраций в черепе. Вибрации передаются напрямую от черепа в жидкость во внутреннем ухе. Это объясняет тот факт, что собственный голос кажется нам непривычным и странным, когда мы слышим его в записи, ведь мы воспринимаем его уже только через воздух – как и все остальные звуки.

Улитка не только отсылает информацию в мозг, но и принимает сигналы от него, являясь частью двустороннего канала коммуникации. Например, мозг сообщает, что нужно настроить чувствительность какой-то зоны улитки, приглушить или убрать мешающие и не нужные в данный момент звуки – или те, которые издает наше тело. Например, улитка приглушает звуки дыхания и сердцебиения, потому что они мешают восприятию. Иногда мы делаем это сознательно: в шумном кафе сосредотачиваемся на звуке одного-единственного голоса и приглушаем менее важные. Это явление называют эффектом коктейльной вечеринки, и его сложно ощутить тем, кто слышит только одним ухом. Два уха дают стереоэффект, и благодаря ему нам легче сосредоточиться только на одном источнике звука.