Думай «почему?». Причина и следствие как ключ к мышлению

Tekst
4
Arvustused
Loe katkendit
Märgi loetuks
Kuidas lugeda raamatut pärast ostmist
Kas teil pole raamatute lugemiseks aega?
Lõigu kuulamine
Думай «почему?». Причина и следствие как ключ к мышлению
Думай «почему?». Причина и следствие как ключ к мышлению
− 20%
Ostke elektroonilisi raamatuid ja audioraamatuid 20% allahindlusega
Ostke komplekt hinnaga 12,30 9,84
Думай «почему?». Причина и следствие как ключ к мышлению
Audio
Думай «почему?». Причина и следствие как ключ к мышлению
Audioraamat
Loeb Владислав Горбылев
6,48
Sünkroonitud tekstiga
Lisateave
Šrift:Väiksem АаSuurem Aa

Глава 2. От государственных пиратов до морских свинок: становление причинного вывода

И всё-таки она вертится.

Приписывается Галилео Галилею, 1564–1642

Почти два столетия одним из самых постоянных ритуалов в британской науке были вечерние лекции по пятницам в Королевском институте Великобритании в Лондоне. Многие великие открытия XIX столетия впервые были представлены публике именно там: принципы фотографии Майкла Фарадея в 1839-м; электроны в докладе Джозефа Джона Томсонав 1897-м; сжижение водорода в лекции Джеймса Дьюара в 1898-м.

Зрелищности на этих мероприятиях всегда придавали большое значение: здесь наука буквально становилась театром, и зрители, сливки британского общества, были разодеты в пух и прах (мужчины непременно в смокингах с черными галстуками). С боем часов вечернего докладчика почтительно вводили в аудиторию. По традиции он начинал лекцию тотчас же, без представления или вступления. Эксперименты и наглядные демонстрации были частью зрелища.

Вечером 9 февраля 1877 года докладчиком был Фрэнсис Гальтон, член Королевского общества, двоюродный брат Чарл-за Дарвина, известный исследователь Африки, изобретатель дактилоскопии и классический пример ученого джентльмена викторианской эпохи. Название доклада Гальтона гласило: «Типичные законы наследственности». Экспериментальный прибор, сделанный им для доклада, представлял собой странное устройство, которое он назвал квинкунксом (сейчас его часто именуют доской Гальтона). Похожее приспособление используется в американской телевикторине «Цена верна». Доска Гальтона состояла из рядов воткнутых в дерево булавок, расположенных таким образом, что любые три соседние булавки образовывали равносторонний треугольник; через отверстие сверху можно было насыпать маленькие металлические шарики, которые, ударяясь о булавки, как в пинболе, скатывались вниз, в итоге попадая в один из пазов внизу доски (см. фронтиспис). Для каждого индивидуального шарика отскоки влево и вправо от булавок по мере скатывания вниз распределяются совершенно случайно. Однако если в устройство Гальтона всыпать много шариков, становится видна удивительная закономерность: накопившиеся на дне шарики всегда образуют грубое подобие колоколообразной кривой. Пазы ближе к центру будут содержать больше всего шариков, а по мере продвижения к обоим краям доски число шариков в каждом пазу будет постепенно уменьшаться.

У такого распределения есть математическое объяснение. Путь каждого отдельного шарика подобен последовательности независимых подбрасываний монеты. Всякий раз, когда шарик сталкивается с булавкой, он отскакивает или вправо, или влево, и со стороны его движение кажется совершенно случайным. Сумма результатов – число отскакиваний вправо относительно числа отскакиваний влево – определяет, в каком из пазов шарик закончит свой путь. Согласно центральной предельной теореме теории вероятностей, доказанной в 1810 году Пьером Симоном Лапласом, любой подобный случайный процесс, эквивалентный большому числу последовательных подбрасываний монеты, приводит к точно такому же вероятностному распределению, называемому нормальным распределением (или колоколообразной кривой). Доска Гальтона – просто наглядное, зримое выражение теоремы Лапласа.

Центральная предельная теорема – воистину чудо математики XIX века. Только задумайтесь: хотя путь каждого отдельного шарика непредсказуем, путь тысячи шариков может быть предсказан довольно точно – удобный факт для продюсеров викторины «Цена верна», которые могут подсчитать, сколько денег все участники выиграют за отчетный период. Этот же закон нужно благодарить за то, что страхование от несчастных случаев оказывается весьма надежным и прибыльным делом, хотя пути Господни для отдельной человеческой судьбы неисповедимы.

Хорошо одетая публика в Королевском институте, вероятно, недоумевала: какое всё это имеет отношение к законам наследуемости – заявленной теме доклада? Чтобы продемонстрировать связь, Гальтон представил слушателям данные, полученные во Франции, где измерялся рост солдат-призывников. У этого показателя распределение тоже оказалось нормальным: людей с ростом около среднего больше всего, а в обе стороны от среднего, по направлению к самым высоким и самым низким, их число плавно уменьшается. На самом деле неважно, о чем идет речь, о росте тысячи призывников или о тысяче шариков в пазах доски Гальтона, если число категорий в выборке (пазов или ростовых промежутков) будет одинаковым, то сравнительно одинаковым будет и распределение индивидуальных случаев по категориям от центра до краев.

Таким образом, по Гальтону, его прибор представляет собой модель наследования роста, как, впрочем, и многих других наследственно обусловленных признаков. Это каузальная модель. Иными словами, согласно Гальтону, каждый шарик «наследует» свое положение на доске примерно по такому же механизму, по которому люди наследуют рост.

Но если мы принимаем эту модель – временно, – то обнаруживается загадка, о которой Гальтон и собирался рассказать тем вечером. Ширина колоколообразной кривой зависит от числа рядов булавок, расположенных между верхней и нижней стороной доски. Допустим, мы удвоим число рядов. Это будет моделью наследования в двух поколениях, первая половина рядов будет соответствовать первому поколению, а вторая – второму. В этом случае мы неизбежно обнаружим большее разнообразие вариантов значений во втором поколении по сравнению с первым, и с каждым последующим поколением колоколообразная кривая будет становиться все шире и шире.

Однако с ростом человека ничего подобного не происходит. Ширина распределения роста людей остается более-менее постоянной с течением времени. Людей трехметрового роста не встречалось 100 лет назад, нет их и сейчас. Что обусловливает стабильность подобных признаков в популяции? Гальтон размышлял над этой загадкой примерно восемь лет, с момента выхода его сочинения «Наследственный гений» в 1869 году.

Как и предполагает заглавие книги, на самом деле Гальтона интересовали не детские настольные игры и не рост солдат, а наследование интеллектуальных способностей человека. Будучи представителем большого круга родства, из которого вышло много выдающихся ученых, Гальтон вполне ожидаемо хотел бы показать, что талант – свойство фамильное, и именно этому он и посвятил свою книгу. Он дотошно составил родословные 605 «выдающихся» англичан, живших в течение четырех предшествующих столетий. Однако обнаружилось, что сыновья этих замечательных граждан, равно как и отцы, были заметно менее исключительными, а их деды и правнуки – еще малопримечательнее.

Сейчас нам нетрудно найти недостатки в постановке задачи, предложенной Гальтоном. Во-первых, возможно ли дать точное определение, что такое «выдающесть»? И не окажется ли, что люди из выдающихся семейств успешны благодаря доступным им привилегиям, а не благодаря таланту? Хотя Гальтон и осознавал эти сложности, он продолжал свои бесплодные поиски генетического определения таланта со все возрастающим рвением.

Тем не менее ученый обнаружил кое-что весьма занимательное, что стало еще более очевидным, когда он переключился на такие признаки, как рост, который проще измерить и который связан с наследственностью более явно, чем талант. Сыновья высоких мужчин, как правило, выше среднего роста, хотя и не такие высокие, как их отцы. Гальтон назвал это явление сначала реверсией, а потом регрессией к среднему значению. Это же явление наблюдается во многих других ситуациях. Если школьники выполняют две разные, но стандартизованные контрольные работы по одному и тому же материалу, то те, кто имел самые высокие баллы за первую контрольную, получат оценки выше среднего и за вторую, хотя и не такие высокие, как в первый раз. Феномен возвращения к среднему встречается повсеместно во всех сферах жизни, образования и бизнеса. Так, в бейсболе новичок года, показавший неожиданно высокие результаты, на втором году обычно «провисает» и играет уже не так хорошо.

Гальтон не знал подобных примеров и предполагал, что наткнулся на закон наследования, а не на закон статистики. Он полагал, что возвращение к среднему обусловлено некой причиной, и на лекции в Королевском институте наглядно проиллюстрировал свои доводы, представив публике двухуровневый квинкункс.

Пройдя первый ряд булавок, шарики попадали в наклонные пазы, которые смещали их вновь к центру доски; затем они проходили второй ряд. Гальтон торжественно показал, что эти пазы полностью компенсируют тенденцию нормального распределения расползаться вширь. В этом случае колоколообразная кривая распределения вероятностей оставалась одной и той же ширины от поколения к поколению.

Таким образом, постулировал Гальтон, возвращение к среднему – это физический процесс, с помощью которого природа обеспечивает одинаковое распределение роста (или интеллекта) в каждом последующем поколении. «Процесс регрессии сотрудничает с общим законом отклонения», – сообщил он своей аудитории. Ученый сравнил его с законом Гука, описывающим тенденцию пружины возвращаться к равновесной длине.

Не забываем, какой был год на дворе. В 1877 году Гальтон искал причинное объяснение и полагал, что регрессия к среднему – это каузальный процесс, подобный закону физики. Он ошибался, но был в этом не одинок. Многие повторяют эту ошибку по сей день. Например, бейсбольные эксперты почти всегда пытаются объяснить «проседание» чемпиона на втором году рассуждениями о причинах. «Он зазнался и расслабился», – сетуют они, или: «Другие игроки сумели найти его слабости и воспользоваться ими». Это может быть правдой, но на деле такой феномен не нуждается в объяснении причин. Чтобы оно произошло, обычно достаточно просто закона случая.

Рис. 8. Устройство, с помощью которого Фрэнсис Гальтон продемонстрировал аналогию наследования роста: а – когда через устройство вроде пинбола пропускают большое количество шариков, то в результате случайных отскакиваний они накапливаются на дне устройства, образуя колоколообразную кривую; б – при двух проходах через устройство, соответствующих двум поколениям, кривая распределения становится шире; в-чтобы упредить эту тенденцию, Гальтон придумал желобки, возвращающие шарики к центру во «втором поколении». Этими желобками Гальтон каузально объясняет явление возвращения к среднему [источник: Гальтон Ф. Естественная наследственность (1889)]

 

Современная статистика объясняет это явление совсем просто. В книге «Думай медленно, решай быстро» Даниэль Канеман делает вывод: «Успех – это талант плюс удача. Большой успех – это чуть больше таланта и намного больше удачи». Новичок года талантливее в бейсболе, чем большинство, но ему, скорее всего, еще и очень повезло. В следующем году ему повезет меньше и его баллы окажутся не столь впечатляющими.

К 1899 году Гальтон это понял и в процессе постижения, разочарованный, но одновременно и восхищенный открываю-щимся, предпринял первый значительный шаг к отделению статистического от причинного. Его рассуждения несколько туманны, но их стоит попытаться понять – ведь это первый, пока робкий лепет только что родившейся статистики.

Гальтон стал собирать разнообразные, так называемые антропометрические данные: рост, длину предплечья, длину и ширину головы и т. п. Он заметил, что если два размерных признака, например рост и длину предплечья, расположить на оси координат, то их сочетание проявляет все ту же регрессию к среднему. У самых высоких людей более длинные руки, чем в среднем, но длина их рук не настолько больше среднего, насколько рост. При этом очевидно, что рост не является причиной длины руки или, наоборот, в лучшем случае и то и другое имеют общую наследственную компоненту. Гальтон стал использовать новый термин для таких пар признаков: рост и длина предплечья со-отнесены, находятся в ко-реляции, ко-релируют. Со временем он перешел к более привычному нам написанию: «корреляция», «коррелируют».

Чуть позже он обнаружил еще более неожиданный факт: при сравнении поколений неважно, движемся ли мы по ходу времени или назад в прошлое. Это значит, что отцы относительно сыновей тоже проявляют возвращение к среднему. Отец сына, который выше ростом, чем популяция в среднем, оказывается почти всегда тоже выше среднего роста, но ниже, чем его сын (рис. 9). Заметив это, Гальтон был вынужден отказаться от попыток найти каузальное объяснение явлению регрессии к среднему, потому что рост сына никоим образом не может определять рост отца.

На первый взгляд, это наблюдение парадоксально. «Постойте! – скажете вы. – Значит, у более длинных отцов более короткие сыновья, а у более длинных сыновей более короткие отцы? Как эти два утверждения могут быть верны одновременно? Не может же сын быть одновременно выше и ниже своего отца».


Рис. 9. Точечный график показывает набор данных о росте. Каждая точка представляет рост отца (по оси Х) и сына (по оси Y). Пунктирная линия совпадает с большой осью эллипса, а сплошная линия (ее называют линией регрессии) соединяет крайнюю левую и крайнюю правую точки эллипса. Разница между ними отражает возвращение к среднему. Например, черная звездочка показывает, что у отцов ростом 72 дюйма сыновья в среднем имеют рост 71 дюйм (т. е. средний рост у всех, чьи данные представлены точками в вертикальной полосе, – 71 дюйм). Горизонтальная полоса и белая звездочка показывают, что такое же падение роста возникает в непричинном направлении (назад во времени) (источник: график Маян Харел при участии Кристофера Баучера)


Ответ заключается в том, что мы говорим не об индивидуальных отцах и сыновьях, а о двух популяциях – отцовской и сыновней. Допустим, мы отобрали отцов, чей рост ровно 6 футов. Это больше среднего, поэтому средний рост их сыновей будет тоже выше среднего, но ближе к среднему, допустим, 5 футов и 11 дюймов. Однако множество пар, в которых рост отца равен 6 футам, не совпадает с множеством пар, в которых рост сына – 5 футов 11 дюймам. В первом множестве рост всех отцов равен 6 футам по условию задачи, а вот во втором окажется несколько отцов с ростом больше 6 футов и много отцов ниже 6 футов. Их средний рост будет ниже, чем 5 футов 11 дюймов, и таким образом регрессия к среднему снова обнаружит себя.

Другой способ наглядно изобразить регрессию – построить диаграмму, называемую точечным графиком (см. рис. 9). Каждая пара из отца и сына на нем представлена точкой, при этом ее положение по оси X определяется ростом отца, а по оси Y – ростом сына. Таким образом, отец и сын, оба ростом 5 футов 9 дюймов (или 69 дюймов), вместе окажутся на графике точкой с координатами (69; 69) прямо по центру точечного графика. Отец ростом 6 футов (или 72 дюйма) и сын ростом 5 футов 11 дюймов (71 дюйм) попадут в точку (72; 71) в северо-западной части нашей диаграммы. Обратите внимание, что облако полученных точек приближается по форме к эллипсу – факт, принципиальный для анализа Гальтона и характерный для нормального распределения для двух признаков.

Как показано на рис. 9, пары, в которых отцы ростом 72 дюйма, располагаются в вертикальном сегменте эллипса с центром в точке 72, а пары, в которых рост сыновей 71 дюйм, расположены в горизонтальном сегменте с центром в точке 71, что графически доказывает, что это две разные выборки. Сосредоточившись только на первой из них, парах с отцами ростом 72 дюйма, мы зададим вопрос, каков средний рост сыновей или, что то же самое, где находится центр этого вертикального сегмента (на глаз можно прикинуть, что центр приходится примерно на 71). Если мы рассмотрим только вторую выборку, в которой рост сыновей 71 дюйм, и спросим, каков средний рост их отцов, это будет равносильно нахождению центра горизонтального сегмента – легко увидеть, что он находится где-то на отметке 70,3.

Двигаясь дальше, выполняем такую же процедуру для всех вертикальных сегментов. Это равносильно вопросу «Каков наиболее вероятный рост сыновей (Y) для отцов ростом X?». И наоборот, рассматривая все горизонтальные сегменты, выясняем, где центр каждого из них: каким окажется (вернее, был, тут мы предсказываем прошлое) наиболее вероятный рост отцов для сыновей с ростом Y.

Размышляя над этими вопросами, Гальтон подошел к важному моменту: предсказания всегда располагаются на линии, названной им линией регрессии, которая расположена более полого, чем главная ось (или ось симметрии) данного эллипса. На самом деле таких линий две – в зависимости от того, данные каких из двух переменных известны и взяты в качестве основания для прогноза, а какие надо предсказать. Можно предугадать рост сыновей по росту отцов, а можно и наоборот. Ситуация совершенно симметрична. И это еще раз демонстрирует нам, что в случаях, где наблюдается регрессия к среднему, между причиной и следствием нет разницы.

Наклон линии регрессии позволяет нам предсказывать значение одной переменной, если нам известны значения второй. В терминах задачи Гальтона наклон в 0,5 означает, что каждому дюйму сверх среднего в росте отца соответствуют дополнительные полдюйма роста сына и наоборот. Наклон, равный единице, свидетельствовал бы о точной корреляции, т. е. каждый дополнительный дюйм роста у отца передавался бы по наследству сыну, который тоже был бы на этот дюйм выше. Наклон кривой не бывает больше единицы: в таком случае сыновья высоких отцов были бы в среднем выше, а сыновья отцов небольшого роста были бы ниже последних, а распределение роста в популяции становилось бы со временем все шире и шире. Через несколько поколений некоторые люди были бы трехметрового роста, а другие – ростом меньше метра, чего в природе не наблюдается. Таким образом, если распределение признака остается одинаковым от поколения к поколению, наклон линии регрессии не превышает единицы.

Закон регрессии применим даже тогда, когда мы рассматриваем корреляцию двух совсем разных признаков, например рост и ай-кью. Если расположить значения одного признака относительно значений другого на точечном графике и правильно подобрать масштаб обеих осей, наклон наиболее близко подходящей прямой всегда будет обладать теми же свойствами. Он равен единице только тогда, когда значения одного признака можно четко предсказать по значениям другого; он равен нулю, если связи между признаками нет и предсказание равносильно случайности. После масштабирования наклон прямой одинаков вне зависимости от того, рассматриваем ли мы признак Х относительно признака Y или наоборот. Другими словами, наклон прямой ничего не говорит нам о том, что в данном случае причина, а что следствие. Одна переменная обусловливает значения другой, или обе они обусловливаются третьей; для предсказания их значений это не важно.

Гальтонова идея корреляции впервые предоставила объективную меру связи двух переменных друг с другом, не зависящую от человеческих суждений и интерпретаций. Эти две переменные могут быть ростом, интеллектом или уровнем дохода; они могут находиться в каузальной, нейтральной или обратно-каузальной зависимости друг от друга – их корреляция всегда будет отражать степень взаимной предсказуемости значений двух признаков. Ученик Гальтона Карл Пирсон позже вывел формулу для наклона (правильно масштабированной) линии регрессии и назвал ее коэффициентом корреляции. До сих пор это первое число, которое вычисляют статистики по всему земному шару, когда хотят узнать, насколько взаимосвязаны любые два признака в массиве данных. Гальтон и Пирсон, должно быть, пришли в восторг, обнаружив такой универсальный способ описания взаимоотношений между случайными переменными. Старые, скользкие концепции причины и следствия по сравнению с математически прозрачной и четкой концепцией коэффициента корреляции казались устаревшими и ненаучными, в особенности Пирсону.

Гальтон и оставленные поиски

По иронии истории Гальтон начал с поисков причинности, а закончил открытием корреляции, отношения, лишенного причинности. Однако все равно признаки каузального мышления остаются в его публикациях. «Легко заметить, что корреляция [между размерами двух органов] должна быть следствием того, что изменчивость двух этих органов отчасти вызвана общими причинами», – пишет он в 1889 году. Первым жертвоприношением на алтарь корреляции стала сложная машина Гальтона для объяснения стабильности распределения генетических признаков в популяции. Доска Гальтона имитировала создание изменчивости по длине тела и ее передачу от поколения к поколению. Но ученому пришлось изобрести наклонные желоба в своей машине, ограничивающие постоянно возрастающее разнообразие в популяции. Не сумев обнаружить биологический механизм, удовлетворительно объясняющий эту силу, возвращающую к среднему, Гальтон просто прервал попытки после восьми лет бесплодных поисков и все внимание сосредоточил на корреляции, как моряк на песне сирены. Статистик Стивен Стиглер, много писавший о Гальтоне, заметил этот неожиданный сдвиг в целях и ожиданиях ученого: «Фигурой умолчания оказались Дарвин, желобки, все это „выживание наиболее приспособленных”. … По жестокой иронии, то, что начиналось как попытка подвести математическую основу под „Происхождение видов”, закончилось тем, что сама суть этой великой работы оказалась отброшена, как ненужная!»

Но для нас, живущих в современную эпоху причинного вывода, исходная проблема остается. Как мы объясним стабильность популяционного среднего, невзирая на дарвиновскую изменчивость, которой одно поколение наделяет последующее?

Возвращаясь к машине Гальтона в свете диаграмм причинности, первое, что я замечаю, – это то, что она была сконструирована неправильно. Постоянно растущей дисперсии, которая вынудила ученого создать ей противовес, вообще не должно было там быть. В самом деле, если мы проследим падение шарика в доске Гальтона с одного уровня на другой, мы увидим, что отклонение на следующем уровне наследует сумму всех отклонений, причиненных всеми булавками, с которыми он сталкивался на своем пути. Это откровенно противоречит уравнению Канемана:

Успех = Талант + Удача;

Большой успех = Чуть больше таланта + Намного больше удачи.

Согласно этим уравнениям, успех в поколении 2 не наследует удачу из поколения 1. Удача по определению преходяща и случайна; она не может влиять на будущие поколения. Но подобное поведение признака несовместимо с устройством машины Гальтона. Чтобы сравнить эти две концепции рядом, нарисуем их ассоциированные диаграммы причинности. На рис. 10а (концепция Гальтона) успех передается через поколения и удача накапливается неограниченно. Это легко себе представить, если под успехом понимать богатство или знатность. Однако для описания наследования физических характеристик, таких как рост, нам придется заменить модель Гальтона той, что на рис. 10б. В ней только генетическая компонента, показанная здесь как талант, передается от одного поколения к другому. Удача действует на каждое поколение независимо, таким образом, что случайные факторы в одном поколении не могут влиять на последующие поколения ни прямо, ни косвенно.

 

Рис. 10. Две модели наследуемости: а – модель, соответствующая машине Гальтона, в которой удача накапливается от поколения к поколению, приводя ко все возрастающей дисперсии успеха; б – генетическая модель, в которой удача не накапливается, приводит к постоянному разбросу успеха


Обе эти модели совместимы с колоколообразным распределением значений роста. Но первая модель не совместима со стабильностью разброса роста (или успеха). Вторая же модель показывает, что для объяснения стабильности разброса успеха от поколения к поколению нам достаточно объяснить только стабильность генетических факторов в популяции (таланта). Эта стабильность, теперь называемая равновесием Харди – Вайнберга, получила удовлетворительное математическое объяснение в работе Годфри Харолда Харди и Вильгельма Вайнберга 1908 года. И да, они основывались на еще одной каузальной модели – менделевской теории наследственности.

Ретроспективно рассуждая, Гальтон не мог предвидеть достижения Менделя, Харди и Вайнберга. В 1877 году, когда Гальтон прочитал свою лекцию, работа Грегора Менделя 1866 года была основательно забыта (ее вновь открыли только в 1900 году), а математические выкладки доказательства Харди и Вайнберга были бы для него, вероятно, слишком сложны. Однако интересно обратить внимание, как близок он был к верному подходу и как диаграммы причинности легко вскрывают ложность его допущения: передачу случайных факторов, удачи, от одного поколения к другому. К сожалению, его завела в тупик красивая, но неверная причинная модель, а позже, открыв красоту корреляции, он уже решил, что каузальность больше не нужна.

В качестве заключительного личного комментария к истории Гальтона я сознаюсь в смертном для историка грехе, одном из многих грехов, допущенных мной в этой книге. В 1960-х стало немодно писать историю науки с точки зрения современной науки, как я делал выше. Такой стиль исторических заметок, который фокусируется на удачных теориях и экспериментах и уделяет мало внимания неподтвержденным теориям и научным тупикам, теперь именуют издевательским термином «история в стиле вигов». Современный стиль истории науки более демократичен, в нем химики и алхимики пользуются равным уважением, а все теории рассматриваются в социальном контексте своего времени.

Однако, когда приходится объяснять, каким образом причинность была изгнана из статистики, я с гордостью надеваю парик историка-вига. Иначе как надев каузальные очки и пересказав историю Гальтона и Пирсона в свете современной науки о причинах и следствиях, просто невозможно понять, как же статистика стала нечувствительным к типу модели методом редукции данных. На самом деле, поступая так, я выпрямляю искажения, созданные современным большинством историков, которые, не владея каузальным словарем, восхищаются изобретением корреляции и не способны заметить огромную потерю – смерть причинности.