Loe raamatut: «Хаос. Создание новой науки»

Font:

Синтии



Человеческое – мелодия, природное – дисгармония…

Джон Апдайк

James Gleick

Chaos

Making a New Science

* * *

This edition is published by arrangement with InkWell Management LLC and Synopsis Literary Agency

Охраняется законом РФ об авторском праве. Воспроизведение всей книги или любой ее части воспрещается без письменного разрешения издателя. Любые попытки нарушения закона будут преследоваться в судебном порядке.

© James Gleick, 1987, 2008

© М. Нахмансон, наследники, Е. Барашкова, перевод на русский язык, 2001, 2021

© А. Бондаренко, Д. Черногаев, художественное оформление серии, 2021

© ООО «Издательство АСТ», 2021 Издательство CORPUS®

Пролог

В 1974 году полицию небольшого городка Лос-Аламос, штат Нью-Мексико, задергали сообщениями, что после наступления темноты по глухим улочкам бродит странный человек1. Из ночи в ночь огонек его сигареты проплывал в темноте. Не ведая цели, он часами блуждал в свете звезд, легко проницавшем разреженный горный воздух. Недоумевала не только полиция. Некоторые ученые из Национальной физической лаборатории также удивлялись экспериментам новоиспеченного коллеги с 26-часовыми сутками. Такой распорядок выбивался из расписания всех остальных людей, живущих в нормальном суточном ритме. Даже для группы теоретической физики это граничило с чудачеством.

За тридцать лет, прошедших с тех пор, как Роберт Оппенгеймер выбрал пустынное плато в штате Нью-Мексико для создания центра разработки атомного оружия, Национальная лаборатория в Лос-Аламосе превратилась в крупнейший научный институт, который располагал ускорителями, газовыми лазерами, химическими лабораториями, обеспечивал работой тысячи специалистов: физиков, инженеров, администраторов, а кроме того, стал одним из мировых центров, владеющих самыми мощными компьютерами. Некоторые из старейших сотрудников лаборатории еще помнили деревянные здания, наспех возведенные среди скал в начале 1940-х годов, однако для следующего поколения ученых Лос-Аламоса – молодых мужчин и женщин в потертых вельветовых штанах и форменных рубашках – крестные отцы первой атомной бомбы были чем-то вроде привидений. Средоточием «чистой» мысли в лаборатории служил теоретический отдел, или отдел Т (компьютерная служба и сектор вооружений маркировались соответственно литерами К и X). Более сотни опытных физиков и математиков трудились в нем на хорошо оплачиваемых позициях, свободных от «академических нагрузок» – преподавания и публикации научных трудов. Эти люди уже имели дело с натурами гениальными и эксцентричными, а потому удивить их было нелегко.

Но Митчелл Фейгенбаум составлял исключение из правил. За всю свою научную карьеру он опубликовал лишь одну статью и продолжал работать над чем-то совершенно бесперспективным. Выглядел он весьма примечательно: открытый лоб, копна густых волос зачесана назад, как у немецких композиторов прошлого века, глаза большие, выразительные. Фейгенбаум изъяснялся скороговоркой, глотая на европейский манер артикли и местоимения, словно не был уроженцем Бруклина. Работал он с маниакальным упорством, но, если дело не спорилось, бросал все и бродил, размышляя, преимущественно ночью. Двадцатичетырехчасовые сутки казались ему слишком короткими. Тем не менее Фейгенбаум был вынужден свернуть свой эксперимент по персональной квазипериодичности, когда понял, что не может больше просыпаться на закате (а такое при его распорядке дня случалось частенько).

К двадцати девяти годам Фейгенбаум снискал репутацию признанного эксперта, и многие сотрудники лаборатории прибегали к его советам, если, разумеется, ухитрялись застать коллегу на месте. Однажды, придя вечером на работу, Фейгенбаум столкнулся в дверях с директором лаборатории Гарольдом Эгнью. Тот был заметной личностью: ученик самого Оппенгеймера, он находился на борту самолета-наблюдателя, сопровождавшего бомбардировщик Enola Gay во время атаки на Хиросиму, и заснял весь процесс доставки первого детища лаборатории к земле.

«Наслышан о ваших талантах, – бросил директор Фейгенбауму. – Почему бы вам не заняться чем-нибудь стоящим? Скажем, термоядерной реакцией, управляемой лазером?»2

Даже друзья Фейгенбаума задавались вопросом, способен ли он оставить свое имя в веках. Человек, шутя разрешавший трудности коллег, казалось, был равнодушен к тому, что сулило славу. Ему, например, нравилось размышлять о турбулентности в жидкостях и газах. Раздумывал он и о свойствах времени: непрерывно оно или дискретно, как чередование сменяющих друг друга кадров киноленты. Еще его занимала способность человеческого глаза отчетливо различать цвет и форму предметов во Вселенной, пребывающей, по мнению физиков, в состоянии квантового хаоса. Он размышлял об облаках, наблюдая за ними с борта самолета, а затем, когда в 1975 году ему урезали финансирование на поездки, с утесов, обступивших лабораторию.

На гористом американском западе облака мало похожи на ту темную бесформенную дымку, что низко стелется над восточным побережьем. Над Лос-Аламосом, лежащим на дне большой вулканической впадины-кальдеры, облака кочуют в беспорядке, но структура их в каком-то смысле упорядоченна. Они принимают формы горных цепей или изрытых глубокими морщинами образований, похожих на поверхность мозга. Перед бурей, когда небеса мерцают и дрожат от зарождающегося в их недрах электричества, эти пропускающие и отражающие свет облака видны за тридцать миль. А весь небесный купол являет взору человеческому грандиозное зрелище, безмолвный укор физикам, которые обходят своим вниманием облака – феномен, хоть и структурированный и доступный наблюдению, но слишком расплывчатый и совершенно непредсказуемый. Вот о подобных вещах и размышлял Фейгенбаум – тихо, незаметно и не очень продуктивно.

Физику ли думать про облака? Его дело – лазеры, тайны кварков, их спин, цвет и аромат, загадки зарождения Вселенной. Облаками же пусть занимаются метеорологи. Эта проблема из разряда «очевидных» – так называются на языке физиков-теоретиков задачи, которые опытный специалист способен разрешить путем анализа и вычислений. Решение «неочевидных» проблем приносит исследователю уважение коллег и Нобелевскую премию. Самые сложные загадки, к которым нельзя подступиться без длительного изучения первооснов и главных законов мироздания, ученые именуют «глубокими». Немногие коллеги Фейгенбаума догадывались о том, что в 1974 году он занимался действительно глубокой проблемой – хаосом.

С началом хаоса заканчивается классическая наука. Изучая природные закономерности, физики почему-то долго пренебрегали хаотическими проявлениями: формированием облаков, турбулентностью в морских течениях, скачками численности популяций растений и животных, колебаниями пиков энцефалограммы мозга или сокращений сердечных мышц. Порождаемые хаосом природные феномены, лишенные регулярности и устойчивости, ученые всегда предпочитали оставлять за рамками своих изысканий.

Однако начиная с 1970-х годов некоторые исследователи в США и Европе начали изучать хаотические явления. Математики, физики, биологи, химики принялись искать связи между различными типами беспорядочного в природе. Физиологи обнаружили присутствие некоего порядка в хаотических сокращениях сердечных мышц, что является основной причиной внезапной и необъяснимой смерти. Экологи исследовали колебания численности популяций шелкопряда. Экономисты раскопали старые биржевые сводки, опробовав на них новые методы анализа рынка ценных бумаг. В результате выяснилось, что обнаруженные закономерности имеют прямое отношение ко множеству других природных явлений – очертаниям облаков, формам разрядов молний, конфигурации сеточек кровеносных сосудов, кластеризации звезд в Галактике.

Когда Митчелл Фейгенбаум приступил к исследованию хаоса, он был одним из немногих энтузиастов, разбросанных по всему миру и почти незнакомых друг с другом. Математик из Беркли, штат Калифорния, собрал вокруг себя небольшую группу и трудился над созданием теории так называемых динамических систем. Биолог из Принстонского университета начал готовить к публикации проникновенный меморандум с призывом к коллегам заинтересоваться удивительно сложным поведением биологических популяций, наблюдаемым в некоторых простых моделях. Математик, работающий на компанию IBM, искал термин для описания семейства новых форм: зубчатых, запутанных, закрученных, расколотых, изломанных, которые, по его мнению, являлись неким организующим началом в природе. Французский специалист по математической физике набрался смелости заявить, что турбулентность в жидкостях, возможно, имеет некоторое отношение к необычному, бесконечно запутанному абстрактному объекту, который он назвал «странным аттрактором».

Десять лет спустя понятие «хаос» дало название стремительно развивающейся дисциплине, которая перевернула всю современную науку. Хаос стал предметом обсуждения для множества конференций и научных журналов. Ведомства, отвечающие за государственные программы военных исследований, ЦРУ и министерство энергетики выделили крупные суммы на изучение хаоса3. В любом большом университете и в исследовательских лабораториях любых корпораций есть ученые, занятые прежде всего проблемой хаоса, а затем уже своей основной профессиональной областью. В Лос-Аламосе был создан Центр нелинейных исследований для координации работ по изучению хаоса и связанных с ним проблем; подобные учреждения появились также в университетских городках по всей стране.

Хаос вызвал к жизни новые способы использования компьютеров и новые типы графиков, которые способны воспроизводить фантастические и тонкие структуры, лежащие в основе сложности. Новая наука дала миру особый язык и новые понятия: фрактал, бифуркация, перемежаемость, периодичность и другие. Все это – новые элементы движения, подобно тому как в традиционной физике кварки и глюоны стали новыми элементарными частицами материи4. Для некоторых ученых хаос – скорее наука переходных процессов, чем теория неизменных состояний; учение о становлении, а не о существовании5.

Как утверждают современные теории, хаос присутствует везде: закручивается струйка сигаретного дыма, трепещет и полощется флаг на ветру, капли воды из подтекающего крана одна за одной то срываются вниз, то словно выжидают. Хаос обнаруживается и в капризах погоды, и в траектории движения летательного аппарата, и в поведении автомобилей в дорожной пробке, и в том, как струится нефть по нефтепроводу6. Каковы бы ни были особенности конкретной системы, ее поведение подчиняется одним и тем же недавно открытым закономерностям. Осознание этого факта заставило управляющих компаниями пересмотреть отношение к страхованию, астрономов – под другим углом взглянуть на Солнечную систему, а политологов – изменить мнение о причинах вооруженных конфликтов7.

Хаос проявляет себя на стыке областей знания. Будучи наукой о глобальной природе систем, теория хаоса объединила ученых, работающих в весьма далеких друг от друга областях. «Пятнадцать лет назад науке угрожал кризис все возрастающей специализации, – заметил ответственный за финансирование исследований чиновник военно-морского министерства США, выступая перед аудиторией математиков, биологов, физиков и медиков. – Удивительно, но эта тенденция превратилась в свою прямую противоположность благодаря феномену хаоса!»8 Хаос вызывает к жизни вопросы, которые плохо поддаются решению традиционными методами, однако позволяют сделать общие заключения о поведении сложных систем. Все первые теоретики хаоса – ученые, давшие начальный толчок развитию этой дисциплины, – имели нечто общее. Они замечали определенные закономерности, особенно такие, которые проявляются в разном масштабе в одно и то же время. У них выработалось особенное чутье, позволявшее оценивать случайность и сложность, предвидеть внезапные скачки мысли. Верующие в хаос – а они иногда действительно называют себя верующими, новообращенными или евангелистами – выдвигают смелые гипотезы о предопределенности и свободе воли, об эволюции и о природе возникновения разума. Они чувствуют, что поворачивают вспять развитие науки, следовавшей по пути редукционизма – анализа систем как совокупностей составляющих их элементарных объектов: кварков, хромосом, нейронов. Они верят, что ищут пути к анализу системы как целого.

Наиболее страстные защитники новой науки даже утверждают, что грядущим поколениям XX век будет памятен лишь благодаря созданию теории относительности, квантовой механики и теории хаоса9. Хаос, заявляют они, стал третьей из революций, последовательно освобождавших физику от догматов ньютоновского видения мира10. По словам одного физика, теория относительности разделалась с иллюзиями Ньютона об абсолютном пространстве-времени, квантовая механика развеяла мечту о контролируемом процессе измерения и, наконец, теория хаоса развенчала Лапласову фантазию о полной предопределенности развития систем11. Из этих трех открытий лишь теория хаоса применима к Вселенной, которую мы можем наблюдать и ощущать, к объектам, которые доступны человеку. Повседневный опыт и реальная картина мира стали уместным предметом исследований. Давно уже зрело ощущение, пусть и не выражавшееся открыто, что теоретическая физика далеко уклонилась от интуитивных представлений человека об окружающем мире. Насколько обоснованна эта еретическая мысль, никому не известно, но теперь некоторые специалисты, считавшие, что физика рано или поздно загонит себя в угол, видят в хаосе выход из тупика.

Исследования хаоса произросли из непопулярных областей физической науки. Главным ее направлением в XX веке считалась физика элементарных частиц, которая исследовала основные элементы, слагающие материю, при все более высоких энергиях, больших масштабах и коротких отрезках времени и породила современные теории о природе физических взаимодействий и происхождении Вселенной. И все же некоторые молодые ученые чувствовали себя разочарованными. Прогресс замедлился, поиски новых частиц не имели успеха, а сама теория стала весьма запутанной. Недовольным казалось, что вершины сияющих абстракций физики высоких энергий и квантовой механики слишком долго доминировали в науке.

В 1980 году космолог Стивен Хокинг, лукасовский профессор12 математики Кембриджского университета, выразил мнение большинства ученых в обзорной лекции, посвященной развитию теоретической физики и названной «Не наступает ли конец физической теории?»: «Мы уже знаем физические законы, описывающие абсолютно все, с чем нам приходится сталкиваться в обычной жизни… И можно считать своеобразным комплиментом успехам теоретической физики тот факт, что нам приходится создавать сложнейшие приборы и тратить огромные деньги и усилия для того, чтобы поставить эксперимент, результаты которого мы не можем предсказать»13.

Однако Хокинг признал, что понимание законов природы в терминах физики элементарных частиц оставило без ответа вопрос о том, как применять эти законы к любым системам, кроме простейших. Предсказуемость предсказуемости рознь. Одно дело – предсказать, что произойдет в камере Вильсона, когда там столкнутся две частицы, разогнанные на ускорителе, и совсем другое – предсказать поведение бурлящей в обычной ванне жидкости, или погоду, или процессы в человеческом мозге.

Хокингову физику, успешно собирающую Нобелевские премии и крупные гранты на дорогостоящие эксперименты, часто называли революционной. Временами казалось, что священный Грааль науки – теория Великого объединения, называемая также теорией всего, – вот-вот окажется в руках «революционеров». Физики проследили развитие энергии и материи во Вселенной всюду и везде, кроме кратчайшего момента ее зарождения. Но действительно ли физика элементарных частиц послевоенного периода была революцией? Или же она лишь «наращивала мясо» на основу, заложенную Эйнштейном, Бором и другими создателями теории относительности и квантовой механики? Безусловно, достижения физики, от атомной бомбы до транзистора, изменили реальность XX века. Тем не менее круг вопросов, которыми занималась физика частиц, казалось, сузился. И сменилось не одно поколение, прежде чем в этой сфере возникла новая идея, изменившая взгляд на мир обычного, рядового человека.

Физика Хокинга могла исчерпать себя, так и не ответив на некоторые фундаментальные вопросы, поставленные природой: как зародилась жизнь, что такое турбулентность, как во Вселенной, подчиняющейся закону повышения энтропии и неумолимо движущейся ко все большему и большему беспорядку, может возникнуть порядок? Кроме того, многие объекты повседневной жизни, например жидкости и системы, подчиняющиеся законам классической механики, уже казались столь обыкновенными и хорошо изученными, что физики перестали ожидать от них каких-либо сюрпризов. Но вышло иначе.

По мере того как революция хаоса набирает обороты, виднейшие ученые без всякого смущения возвращаются к феноменам «человеческого масштаба». Они изучают не галактики, а облака. Приносящие прибыль компьютерные расчеты выполняются не на «креях», а на «макинтошах»14. Ведущие научные журналы рядом со статьями по квантовой физике публикуют исследования, посвященные загадкам движения шарика, который прыгает по столу. Многие простейшие системы, оказывается, обладают исключительно сложным и непредсказуемым хаотическим поведением. И все же в подобных системах иногда самопроизвольно возникает порядок: порядок и хаос в них сосуществуют. Лишь новая научная дисциплина могла положить начало преодолению огромного разрыва между знаниями о том, как действует единичный объект – одна молекула воды, одна клеточка сердечной ткани, один нейрон – и как ведут себя миллионы таких объектов.

Понаблюдайте за двумя островками водяной пены, кружащимися бок о бок у подножия водопада. Можете ли вы угадать, каково было их взаимное положение до того, как они обрушились с водопадом вниз? Вряд ли. С точки зрения традиционной физики только что не сам Господь Бог перемешивает молекулы воды в водопаде. Как правило, получив сложный результат, физики ищут сложные объяснения, и, если им не удается обнаружить устойчивую связь между начальным и конечным состояниями системы, они считают, что реалистичности ради в теорию, описывающую эту систему, должен быть «встроен» элемент случайности – искусственно сгенерированный шум или погрешность. Изучать хаос начали в 1960-х годах, когда ученые осознали, что довольно простые математические уравнения позволяют моделировать системы, столь же неупорядоченные, как самый бурный водопад. Незаметные различия в исходных условиях способны обернуться огромными расхождениями в результатах – подобный феномен называют «сильной зависимостью от начальных условий». Применительно к погодным явлениям это выливается в так называемый эффект бабочки: сегодняшнее трепетание крыльев мотылька в Пекине через месяц может вызвать ураган в Нью-Йорке.

Пытаясь отыскать истоки новой науки в прошлом, исследователи хаоса обнаруживают много предвестников переворота. Однако один из них стоит особняком. Для молодых физиков и математиков, возглавивших революцию в науке, точкой отсчета стал именно эффект бабочки.

Глава 1
Эффект бабочки

Физикам нравится думать, будто все, что надо сделать, сводится к фразе: вот начальные условия, что случится дальше?

Ричард Фейнман

Эдвард Лоренц и его мини-модель погоды. Компьютер ведет себя странно. Долгосрочный прогноз погоды невозможен. Порядок, выдающий себя за случайность. Мир нелинейности. «Мы упустили самую суть».

Солнце катилось по небу, никогда не знавшему облаков. Ветры обтекали землю, гладкую как стекло. Ночь никогда не наступала, осень никогда не сменялась зимой. Никогда не шел дождь. Погода, смоделированная новым компьютером Эдварда Лоренца, менялась медленно, но вполне определенно, напоминая ясный полдень в межсезонье, как будто мир превратился в сказочный Камелот или некое легкое подобие Южной Калифорнии15.

Из своего окна Лоренц мог наблюдать реальную погоду: утренний туман, окутавший почти весь кампус Массачусетского технологического института, или низкие облака с Атлантики, нависающие над верхушками крыш. Ни то ни другое не появлялось в его компьютерной модели. Сама вычислительная машина Royal МсВее – скопище проводов и вакуумных ламп – занимала добрую половину кабинета Лоренца, была раздражающе шумной и ломалась не реже раза в неделю. Это устройство не обладало ни достаточным быстродействием, ни объемом памяти, необходимым для того, чтобы построить реальную модель атмосферы и гидросферы Земли. И все же в 1960 году Лоренц создал мини-модель погоды, которая привела в восторг его коллег. Каждую минуту компьютер выдавал стройные ряды чисел. Посвященным они сообщали, что господствующее сейчас западное направление ветра скоро сменится на северное, потом на южное и вновь на северное. Оцифрованные циклоны в компьютере Лоренца медленно кружили по воображаемому глобусу. Как только об этом узнали на факультете, преподаватели и старшекурсники стали заключать пари, пытаясь угадать, какой будет искусственная погода в следующий момент. Неведомым образом машина никогда не повторялась.

Лоренц просто наслаждался погодой – весьма полезная наклонность для исследователя-метеоролога. Смакуя изменчивость атмосферных явлений, он постигал природу происходящего в скоплениях воздушных вихрей и циклонов, которые, неизменно подчиняясь математическим законам, в точности не повторялись ни разу. Ученому казалось, что облакам присуща особая структура. Раньше он опасался, что научное исследование погоды будет сродни попыткам разобрать шкатулку с секретом при помощи отвертки. Теперь же Лоренц гадал, способно ли вообще рациональное знание проникнуть в это таинство. Погода обладала свойствами, которые нельзя объяснить с помощью средних величин. Средняя температура в июне в Кембридже и Массачусетсе держится на уровне 75 градусов по Фаренгейту16. Дождливая погода в Эр-Рияде в Саудовской Аравии выпадает в среднем на десять дней в году – вот о чем говорила статистика. Суть же вопроса заключается в том, как именно сменяются модели атмосферных процессов с течением времени. Ее-то и сумел ухватить Лоренц.

Творец и вседержитель компьютерной вселенной, он волен был устанавливать законы природы по своему усмотрению. После нескольких проб и ошибок, отнюдь не божественного свойства, он выбрал двенадцать уравнений, описывающих связь между температурой и атмосферным давлением, а также давлением и скоростью ветра17. Лоренц применил на практике законы Ньютона – вполне подходящий инструмент для Небесного Часовщика, который сотворил мир и устанавливает завод на вечность. Благодаря детерминизму физических законов дальнейшего вмешательства не требовалось. Творцы машинных моделей верили, что ныне и во веки веков законы движения подводят под их расчеты базу математической определенности. Постигни закон – и ты поймешь Вселенную. В этом заключалась философия компьютерного моделирования погоды.

Мыслители XVIII века представляли себе Творца благожелательным и не склонным к излишнему вмешательству в мирские дела наблюдателем. Именно таким и был Лоренц. Он принадлежал к типажу чудаковатых ученых. Удивительные глаза его всегда смеялись, придавая усталому лицу фермера-янки неизменно веселое выражение. Он редко говорил о себе и о своей работе, предпочитая слушать, и при этом частенько уносился мыслью в такие дали, что был недосягаем для коллег. Самые близкие его друзья чувствовали, что львиную долю своего свободного времени Лоренц проводит в заоблачных мирах.

Мальчиком он был просто помешан на погоде и составлял весьма точные таблицы дневной температуры, фиксируя с помощью термометра ее минимумы и максимумы в Уэст-Хартворде, штат Коннектикут, где жила его семья. Впрочем, чаще всего он сидел дома, погруженный в сборники математических головоломок. Иногда Эдвард решал их вместе с отцом. Однажды они столкнулись с особенно сложной задачей, которая оказалась неразрешимой. Ничего страшного, утешил отец, всегда можно попробовать решить задачу, доказав, что решения вовсе не существует. Лоренца пленила эта мысль, ясная, как и вся математика18. Окончив в 1938 году Дартмутский колледж, он решил посвятить себя этой науке. Однако обстоятельства помешали его планам: началась Вторая мировая война. Лоренц стал метеорологом ВВС США. После войны он не только не оставил занятий метеорологией, но и изучил ее теоретические основы, расширив и углубив свои математические познания. Работа, посвященная общему круговороту атмосферы, принесла ему известность. Одновременно Лоренц продолжал заниматься прогнозированием.

Даже самые серьезные и опытные метеорологи вряд ли считали наукой составление прогнозов погоды – заурядное ремесло для набивших руку и не лишенных интуиции людей, работа, которой присуща некая доля шаманства. В крупных научных центрах вроде Массачусетского технологического института метеорологи тяготели к проблемам, имеющим строгое решение. Лоренц, как и любой другой специалист, вполне сознавал прагматическое назначение прогнозов, составляемых в помощь военной авиации, но до поры до времени скрывал свой теоретический интерес к прогнозированию с позиций математики.

Мало того что метеорологи презирали прогнозирование – в 1960-е годы почти все уважающие себя ученые еще и не доверяли компьютерам. Эти счетные машины, значение которых было явно преувеличено, вряд ли могли рассматриваться как инструмент для серьезных занятий наукой. Таким образом, численное моделирование погоды оказалось делом весьма неблагодарным, хотя время для него было самым подходящим. Вот уже два столетия наука об атмосфере ждала появления машины, способной снова и снова производить тысячи вычислений, повинуясь указаниям человека. Лишь компьютер мог реализовать ньютоновское обещание, что мир идет по пути детерминизма, а погода подчиняется законам, столь же незыблемым, как и принципы движения планет, наступления солнечных и лунных затмений, морских приливов и отливов. Теоретически электронная машина позволяла метеорологам предпринять то, что астрономы проделывали с помощью карандаша и логарифмической линейки: рассчитать будущее Вселенной, исходя из ее начального состояния и физических закономерностей, управляющих ее эволюцией. Уравнения, описывающие циркуляцию воздуха и воды, были так же хорошо известны, как и те, которым подчинялся ход планет. Кстати, астрономы не достигли совершенства – оно недостижимо в Солнечной системе, раздираемой тяготением девяти19планет, множества спутников и астероидов. Тем не менее астрономические расчеты были столь точны, что люди подчас забывали об их прогностическом характере. Когда астроном говорил, что комета Галлея вновь приблизится к Земле через семьдесят шесть лет, это воспринималось как факт, а не как предсказание. Тщательно составленные численные прогнозы, основанные на детерминизме, определяли траектории полета космических кораблей и ракет. Отсюда следовало предположение: так почему бы не рассчитать поведение ветра и облаков?

Погода, при всей сложности этого феномена, подчиняется тем же законам ньютоновской механики. Пожалуй, сверхмощный компьютер мог бы стать высшим разумом, способным, по представлениям философа-математика XVIII века Лапласа, воспринявшего идеи Ньютона особенно близко, описать «единой формулой движения как наиболее крупных тел во Вселенной, так и легчайшего атома; для него не осталось бы ничего неопределенного, и будущее предстало бы перед ним наряду с прошлым»20. В эпоху, когда господствовали теория относительности Эйнштейна и принцип неопределенности Гейзенберга, оптимизм Лапласа казался просто шутовством; однако многие современные ученые попытались воплотить его мечту. Стремление исследователей XX века – биологов, физиологов, экономистов – разложить свои миры на атомы, подчиняющиеся законам науки, вполне понятно. Во всех этих дисциплинах господствовал детерминизм сродни ньютоновскому. Отцы-основатели современных компьютерных технологий всегда помнили о Лапласе, и развитие ЭВМ шло бок о бок с развитием прогнозирования еще с тех пор, когда в 1950-х годах Джон фон Нейман сконструировал свои первые машины в Институте перспективных исследований в Принстоне, штат Нью-Джерси. Кстати, Нейман признавал, что моделирование погоды может стать идеальным заданием для компьютера.

Впрочем, существовало одно маленькое «но» – столь незначительное, что ученые старались позабыть о нем, упрятать подальше, как прячут в ящик стола неоплаченный счет. Измерения никогда не бывают совершенными. Ученые, вставшие под ньютоновские знамена, обычно выдвигают следующий аргумент: имея приблизительные данные о начальном состоянии системы и понимая естественный закон, которому она подчиняется, можно рассчитать ее примерное поведение. Такой подход вытекает из самой философии науки. Один видный теоретик любил подчеркивать в своих лекциях: «Главная идея науки состоит в том, чтобы не обращать внимания на лист, падающий в одном из миров другой галактики, когда вы пытаетесь объяснить движение шарика по бильярдному столу на планете Земля. Небольшими воздействиями можно пренебречь. Существует сходство в поведении объектов, и сколь угодно малые воздействия не усиливаются настолько, чтобы оказывать сколь угодно большое влияние»21. Как правило, вера в приблизительность и сходство вполне себя оправдывает. Крошечная погрешность в определении координат кометы Галлея в 1910 году незначительно исказила прогноз времени следующего ее появления, которое состоялось в 1986 году. Эта ошибка останется столь же малой в ближайшие миллионы лет. Компьютеры, направляющие космические корабли, на основе относительно точных исходных данных выдают относительно точный результат. С тем же успехом действуют экономисты, составляя свои прогнозы, хотя результат их работы и не столь очевиден. Пионеры прогнозирования погоды не были исключением.

С помощью своего примитивного компьютера Лоренц буквально разобрал погоду по кирпичикам, но все же казалось, что в его распечатках поведение ветра и температуры обнаруживает нечто узнаваемое с житейской точки зрения. Так проявлялась зрелая интуиция исследователя, его чувство погоды, которая, по ощущению Лоренца, повторялась, демонстрируя время от времени одни и те же схемы поведения: давление росло и падало, воздушные массы устремлялись то на север, то на юг. Ученый выяснил, что, когда кривая плавно идет вниз, не образуя ярко выраженного максимума, на графике вскоре обозначаются две резкие выпуклости. Лоренц утверждал, что эту закономерность вполне мог бы использовать в своей работе метеоролог22. Однако повторения никогда не были полностью идентичными. В рамках общей модели всякий раз обнаруживались отклонения – своего рода упорядоченный беспорядок.

1.Фейгенбаум, Каррутерс, Кэмпбелл, Фармер, Вишер, Керр, Хасслачер, Джен.
2.Фейгенбаум, Каррутерс.
3.Бачел, Шлезингер, Вишневски.
4.Йорк.
5.Browand F. К. «The Structure of Turbulent Mixing Layer» // Physica. 1986. Vol. 18D. P. 135.
6.К изучению поведения автомобилей в дорожной пробке особенно серьезно подошли японские ученые; см. Musha T., Higuchi H. «The 1/f Fluctuation of a Traffic Current on an Expressway» // Japanese Journal of Applied Physics. 1976. P. 1271–1275.
7.Mandelbrot R., Wisdom M., Alvin M. S. «Chaos – A Model for the Outbreak of War» // Nature. 1984. Vol. 309. P. 303–305.
8.Шлезингер.
9.Шлезингер.
10.Форд.
11.Ford J. «What Is Chaos, That We Should Be Mindful of It?», preprint. Georgia Institute of Technology. P. 12.
12.Именная позиция в Кембридже (одна из самых престижных научных должностей в мире), названная по имени благотворителя Генри Лукаса, завещавшего в 1663 году средства для ее финансирования. Вторым лукасовским профессором был сэр Исаак Ньютон, с тех пор ее часто неформально называют «ньютоновской». – Здесь и далее, если не указано иное, прим. науч. ред.
13.Boslough J. Stephen Hawklng's Universe. Cambridge: Cambridge University Press, 1980; см. также: Shaw R. The Dripping Faucet as a Model Chaotic System. Santa Cruz: Aerial, 1984. P. 1.
14.Cray – название компании, производящей суперкомпьютеры. Macintosh – название персональных компьютеров, выпускавшихся компанией Apple.
15.Лоренц, Малкус, Шпигель, Фармер. По сути, Лоренц создал три ключевые работы, центральная из которых: «Deterministic Nonperiodic Flow» // Journal of the Atmospheric Sciences. 1963. Vol. 20. P. 130–141. Она дополнена еще двумя: «The Mechanics of Vacillation» // Journal of the Atmospheric Sciences. 1963. Vol. 20. P. 448–464; «The Problem of Deducing the Climate from the Governing Equations» // Tellus. 1964. Vol. 16. P. 1–11. Вместе они составляют обманчивое в своей легковесности исследование, которое и двадцать лет спустя продолжало влиять на умы математиков и физиков. Некоторые погодные модели, построенные лично Лоренцем с помощью его первого компьютера, см.: «On the Prevalence of Aperiodicity in Simple Systems» // Global Analysis / Ed. by M. Marsden and J. Marsden. New York: Springer-Verlag, 1979. P. 53–75.
16.Примерно 24 градуса по Цельсию.
17.Современное описание проблемы использования уравнений в погодном моделировании, изложенное Лоренцем, см.: «Large-Scale Motions of the Atmosphere: Circulation» // Advances In Earth Science / Ed. by P. M. Hurley. Cambridge, Mass.: The M. I. T. Press, 1966. P. 95–109. Одно из самых ранних и вдохновляющих исследований этой проблемы: Richardson L. F. Weather Prediction by Numerical Process. Cambridge: Cambridge University Press, 1922.
18.Лоренц. Как в его мышлении сочетались математические и метеорологические основания, см.: «Irregularity: A Fundamental Property of the Atmosphere», Crafoord Prize Lecture presented at the Royal Swedish Academy of Sciences, Stockholm, Sept. 28, 1983 // Tellus. 1984. Vol. 36A. P. 98–110.
19.Уже восьми: в 2006 году Плутон переведен в статус «карликовых планет».
20.Laplace P. S. de. A Philosophical Essay on Probabilities. New York: Dover, 1951.
21.Уинфри.
22.Лоренц.
€5,55
Vanusepiirang:
12+
Ilmumiskuupäev Litres'is:
07 detsember 2020
Tõlkimise kuupäev:
2001
Kirjutamise kuupäev:
2008
Objętość:
488 lk 48 illustratsiooni
ISBN:
978-5-17-116057-9
Õiguste omanik:
Corpus (АСТ)
Allalaadimise formaat: