Loe raamatut: «Искусственный интеллект в государственном и муниципальном управлении. Учебное пособие»
Редактор, иллюстратор, корректор, дизайн обложки Станислав Михайлович Шевалдин
© Елена Шевалдина, 2024
ISBN 978-5-0065-1828-5
Создано в интеллектуальной издательской системе Ridero
Рецензенты:
Салихова Светлана Фидарисовна, кандидат экономических наук, доцент кафедры «Региональная экономика и управление» ФГБОУ ВО УГНТУ
Сизоненко Зарина Лероновна кандидат социологических наук, доцент кафедры «Государственного управления» Института истории и государственного управления ФГБОУ ВО УУНиТ
Учебное пособие предназначено для подготовки бакалавров по направлениям подготовки: 38.03.04 «Государственное и муниципальное управление», а также студентов других специальностей, интересующихся вопросами использования технологий искусственного интеллекта в государственном и муниципальном секторе в рамках дисциплины «Государственная и муниципальная служба».
Введение
В современном мире информационные технологии развиваются с невероятной скоростью, и одной из самых перспективных областей является искусственный интеллект (ИИ). Искусственный интеллект – это комплекс технологических решений, позволяющий имитировать когнитивные функции человека (включая поиск решений без заранее заданного алгоритма) и получать при выполнении конкретных задач результаты, сопоставимые с результатами интеллектуальной деятельности человека или превосходящие их. Комплекс технологических решений включает в себя информационно-коммуникационную инфраструктуру, программное обеспечение (в том числе в котором используются методы машинного обучения), процессы и сервисы по обработке данных и поиску решений [7]. В последние годы мы стали свидетелями значительного прогресса в этой области, и сегодня ИИ находит применение во многих сферах нашей жизни.
Цель учебного пособия – познакомить студентов с возможностями и ограничениями использования искусственного интеллекта в работе государственных и муниципальных служащих, формирование у студентов комплексного понимания того, как искусственный интеллект интегрируется в государственное и муниципальное управление и как это влияет на общество.
Для достижения поставленной цели рассматриваются следующие задачи:
– объяснить, что такое искусственный интеллект и как он работает;
– рассказать о возможностях ИИ в государственном и муниципальном управлении;
– рассмотреть вопросы применения ИИ для автоматизации задач в государственном и муниципальном управлении, для улучшения качества обслуживания граждан на примере нескольких кейсов, для формирования комфортной и безопасной среды обитания;
– рассмотреть риски и недостатки использования ИИ в государственном и муниципальном управлении;
– изучить существующую практику использования ИИ в органах власти;
– в рамках вопросов для самоподготовки научить студентов определять возможность применения ИИ для конкретной задачи и проводить анализ рисков и недостатков использования ИИ в рамках поставленных задач.
Учебное пособие поможет получить необходимые знания и навыки в области взаимодействия государственного или муниципального служащего и ИИ, которые будут полезны для вашей профессиональной деятельности в сфере ГМУ.
Пособие состоит из четырёх глав, каждая из которых посвящена определённой теме. В конце каждой главы представлены контрольные вопросы для закрепления материала. Также в пособии есть практические задания, которые помогут студентам применить полученные знания на практике.
ГЛАВА 1. ЧТО ТАКОЕ ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
1.1. Определение искусственного интеллекта
Существует несколько определений искусственного интеллекта. Правовое определение согласно «Национальной стратегии развития искусственного интеллекта на период до 2030 года» дано во введении. Более простым является определение, данное в Рувики: «Искусственный интеллект (англ. artificial intelligence; AI) – свойство искусственных интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека; наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ» [65].
Впервые термин «искусственный интеллект» был введен в доктринально-лексический оборот Джоном Маккарти в 1956 г. на первой научной конференции, посвященной вопросам интеллектуализации электронно-вычислительной техники», согласно мнению которого, он представлял собой «свойство роботов, компьютерных программ и систем решать задачи, формулировать выводы, принимать решения, выполняя творческие и интеллектуальные функции человека» [135].
ИИ является одним из самых перспективных направлений в области информационных технологий. Он может быть использован для создания систем, которые способны решать сложные задачи, требующие человеческого интеллекта, таких как распознавание речи, понимание естественного языка, обучение и планирование. В соответствии с «Национальной стратегией развития искусственного интеллекта на период до 2030 года» технологии искусственного интеллекта – это совокупность технологий, включающая в себя компьютерное зрение, обработку естественного языка, распознавание и синтез речи, интеллектуальную поддержку принятия решений и перспективные методы искусственного интеллекта [7].
Большинство исследователей согласны с тем, что ИИ должен выполнять задачи, которые обычно требуют человеческого интеллекта.
К таким задачам относятся:
– восприятие окружающей среды;
– рассуждение и принятие решений;
– обучение и адаптация.
Таким образом, ИИ представляет собой технологию, позволяющую компьютерам имитировать человеческое поведение и мышление, включая решение задач, обучение, восприятие и взаимодействие с окружающим миром.
Основными характеристиками ИИ являются:
– Способность к обучению. ИИ-системы могут обучаться на основе данных, которые они получают. Это позволяет им улучшать свою производительность и точность со временем.
– Адаптивность. ИИ-системы могут адаптироваться к изменениям в окружающей среде. Это делает их более гибкими и эффективными в решении задач.
– Рассуждения. ИИ-системы могут использовать логические правила и алгоритмы для принятия решений. Это позволяет им решать задачи, которые требуют логического мышления.
– Восприятие. ИИ-системы могут воспринимать информацию из окружающей среды с помощью датчиков и камер. Это позволяет им взаимодействовать с миром вокруг них.
– Взаимодействие. ИИ-системы могут взаимодействовать с людьми и другими системами. Это делает их полезными для автоматизации процессов и повышения эффективности работы.
Эти характеристики делают ИИ мощным инструментом, который может быть использован в различных областях, таких как медицина, юриспруденция, финансы, транспорт, сельское хозяйство и производство.
Существуют различные виды ИИ, которые отличаются по своим характеристикам и возможностям. К ним относятся слабый ИИ, сильный ИИ и супер-ИИ. Слабый ИИ предназначен для выполнения конкретных задач, таких как распознавание изображений или обработка естественного языка. Он не обладает способностью к самообучению или адаптации. Сильный ИИ обладает способностью к мышлению и рассуждению, подобно человеку, он способен решать задачи, требующие творческого подхода и абстрактного мышления. Супер-ИИ – это гипотетический ИИ, который превосходит возможности человека во всех областях. Он обладает способностью к самообучению и адаптации, а также к решению сложных задач.
На данный момент не существует сильного или супер-ИИ. Все существующие ИИ-системы являются слабыми ИИ. Они предназначены для решения конкретных задач и не обладают способностью к мышлению или рассуждению. По словам одного из ведущих мировых специалистов в области искусственного интеллекта, являющегося главой отдела искусственного интеллекта в IT-компании США, Янна Лекуна «мировые модели являются ключом к искусственному интеллекту на уровне человека, но это может произойти через 10 лет» [43].
Базовые классы ИИ-систем группируют на основе следующих принципов:
1) по классам и категориям объектов в управлении;
2) по технологиям построения, приобретения и использования знаний;
3) по функциям, которые выполняет ИИ в контуре управления;
4) по методам и технологиям, используемым в ИИ;
5) по методам и средствам взаимодействия ИИ с другими системами и человеком-оператором.
Эти подходы к классификации являются основными. Каждый из них может иметь иерархическую структуру [40].
В данном учебном пособии будет часто использоваться понятие «модель искусственного интеллекта», под которым будет подразумеваться программа для электронных вычислительных машин (ее составная часть), предназначенная для выполнения интеллектуальных задач на уровне, сопоставимом с результатами интеллектуального труда человека или превосходящем их, использующая алгоритмы и наборы данных для выведения закономерностей, принятия решений или прогнозирования результатов.
1.2. Краткий обзор истории развития ИИ.
История развития искусственного интеллекта начинается задолго до появления первых компьютеров. Ещё в античные времена философы задавались вопросами о природе человеческого разума и возможности создания мыслящих машин. В эпоху Средневековья и Возрождения эти идеи получили новое развитие в работах таких мыслителей, как Рене Декарт и Готфрид Лейбниц, которые заложили основы для будущих исследований в области ИИ.
Первые попытки создания механических устройств, способных выполнять интеллектуальные задачи, относятся к XVII—XVIII векам. В XIX веке появились первые вычислительные машины, такие как разностная машина Чарльза Бэббиджа, которая считается прообразом современного компьютера. Однако эти устройства были далеки от современных представлений об ИИ.
В XX веке исследования в области ИИ перешли на новый уровень благодаря развитию кибернетики, теории алгоритмов и машинного обучения. В 1950-х годах Алан Тьюринг предложил тест, который стал одним из основных критериев оценки уровня развития ИИ. Этот период также ознаменовался созданием первых компьютерных программ, способных решать логические задачи и играть в шахматы.
Таким образом, предыстория и первые шаги в развитии ИИ представляют собой длительный процесс, начавшийся ещё в античности и продолжающийся до наших дней. За это время были созданы различные механические устройства, разработаны новые теории и подходы, что в конечном итоге привело к появлению современных систем ИИ.
Период с 1960 по 1970 год стал временем активного развития и становления искусственного интеллекта как самостоятельной области исследований. В этот период были заложены основы многих современных технологий ИИ, а также сформировались основные направления исследований.
Одним из ключевых событий этого периода стало создание первых экспертных систем, которые представляли собой компьютерные программы, способные решать задачи в определённой предметной области на основе знаний экспертов. Экспертные системы стали важным шагом в развитии ИИ, поскольку они продемонстрировали возможность создания систем, способных обрабатывать большие объёмы данных и принимать решения на основе логических рассуждений.
Другим важным направлением исследований в этот период стало развитие методов машинного обучения, которые позволили компьютерам автоматически улучшать свою производительность на основе опыта. Машинное обучение стало основой для создания многих современных систем ИИ, таких как нейронные сети и глубокое обучение.
Кроме того, в этот период были проведены первые эксперименты по созданию интеллектуальных роботов, которые могли бы взаимодействовать с окружающей средой и выполнять задачи в реальном мире. Эти эксперименты показали потенциал ИИ для создания автономных систем, способных работать в различных условиях.
Таким образом, эпоха становления ИИ в 1960—1970-е годы стала периодом активного развития и формирования основ современных технологий ИИ. Были созданы первые экспертные системы, разработаны методы машинного обучения и проведены эксперименты по созданию интеллектуальных роботов.
После бурного развития в 1960—1970-е годы исследования в области искусственного интеллекта столкнулись с периодом застоя в 1980-х годах. Это было связано с рядом факторов, включая отсутствие прогресса в создании интеллектуальных систем, способных решать сложные задачи, и разочарование в результатах предыдущих исследований.
Однако, несмотря на застой, исследования в области ИИ продолжались. Были разработаны новые методы машинного обучения, такие как обучение с подкреплением, которое позволило компьютерам учиться на основе обратной связи от окружающей среды. Также были проведены исследования в области нейронных сетей, которые стали основой для создания современных систем глубокого обучения.
Тем не менее, период застоя оказал значительное влияние на развитие ИИ. Многие исследователи потеряли интерес к этой области, а финансирование исследований сократилось. Это привело к замедлению темпов развития ИИ и снижению интереса к нему со стороны научного сообщества.
Несмотря на все трудности, период застоя также стал периодом переосмысления целей и задач исследований в области ИИ. Исследователи начали искать новые подходы и методы, которые могли бы привести к созданию более эффективных и универсальных систем ИИ. Это заложило основу для будущего возрождения интереса к ИИ в 1990-х годах.
Возрождение интереса к искусственному интеллекту в 1990-х годах стало результатом ряда факторов, включая развитие новых технологий, таких как Интернет и мобильные устройства, а также успехи в области машинного обучения и нейронных сетей.
Развитие Интернета и мобильных устройств привело к созданию новых платформ и инструментов для разработки и развёртывания систем ИИ. Это позволило исследователям создавать более сложные и эффективные системы ИИ, которые могли работать с большими объёмами данных и решать более сложные задачи.
Успехи в области машинного обучения и нейронных сетей также сыграли важную роль в возрождении интереса к ИИ.
Таким образом, основные этапы развития ИИ можно представить следующим образом:
– 1950—1960-е годы: разработка первых компьютеров и исследований в области ИИ;
– 1970-е годы: замедление развития ИИ из-за отсутствия прогресса;
– 1980-е годы: возрождение интереса к ИИ благодаря развитию экспертных систем и нейронных сетей;
– 1990-е годы: развитие ИИ благодаря Интернету и мобильным устройствам;
– настоящее время: быстрое развитие ИИ благодаря новым технологиям.
1.3. Общие принципы создания и функционирования ИИ-моделей
1. Создание ИИ-моделей
Создание ИИ-модели включает несколько ключевых этапов. Для начала нужно определить цель и задачи модели. Прежде всего, необходимо понять, для чего вы хотите использовать искусственный интеллект. Это может быть:
– распознавание образов – используется для идентификации объектов, лиц, текста и т. д.
– обработка естественного языка (Natural Language Processing, NLP) – позволяет компьютерам понимать и генерировать человеческий язык.
– рекомендательные системы – предлагают пользователям персонализированные рекомендации на основе их предпочтений.
– прогнозирование временных рядов – предсказывает будущие значения временных рядов на основе исторических данных.
– автоматическое планирование – помогает планировать действия для достижения целей в условиях неопределённости.
Существует несколько подходов к созданию ИИ-моделей:
– символьный подход основан на использовании символов и правил для представления знаний и рассуждений. Этот подход используется в экспертных системах, которые помогают врачам ставить диагнозы и юристам давать консультации.
– нейронный подход основан на использовании нейронных сетей, которые представляют собой математические модели, имитирующие работу человеческого мозга. Нейронные сети используются в машинном обучении, которое позволяет компьютерам учиться на основе данных без явного программирования.
– гибридный подход объединяет символьный и нейронный подходы для создания более мощных ИИ-моделей. Гибридные системы используются в робототехнике, где роботы должны взаимодействовать с окружающей средой и людьми.
Методы обучения ИИ-модели тоже могут быть разными. Различают три основных вида:
– машинное обучение (Machine learning, ML) использует алгоритмы для анализа данных и выявления закономерностей. Оно может быть как с учителем (supervised), так и без учителя (unsupervised).
– глубокое обучение (Deep learning, DL) использует многослойные нейронные сети для обработки сложных данных, таких как изображения и текст.
– обучение с подкреплением (Reinforcement Learning, RL), при котором модели учатся принимать решения на основе обратной связи от окружающей среды.
2. Обучение искусственного интеллекта.
Обучение искусственного интеллекта – это процесс, в котором ИИ-модели учатся на основе данных. Существует два основных типа обучения:
– контролируемое обучение; в этом типе обучения ИИ-модель обучается на размеченных данных, то есть данных, для которых известны правильные ответы. Контролируемое обучение используется в задачах классификации, таких как распознавание изображений и речи.
– неконтролируемое обучение; в этом типе обучения ИИ-модель не знает правильных ответов заранее. Неконтролируемое обучение используется в задачах кластеризации, таких как сегментация изображений и анализ текста.
Процесс обучения искусственного интеллекта включает следующие этапы:
2.1. Сбор данных: данные собираются из различных источников, таких как интернет, базы данных и сенсорные устройства. Данные должны быть чистыми и структурированными, чтобы их можно было использовать для обучения.
2.2. Предварительная обработка данных: данные очищаются от шума и ошибок, а также преобразуются в формат, который может быть использован для обучения. Предварительная обработка данных может включать нормализацию, масштабирование и кодирование.
2.3. Выбор модели: модель выбирается на основе типа задачи и доступных данных. Модель представляет собой математическую функцию, которая отображает входные данные в выходные.
2.4. Обучение модели: ИИ-модель обучается на данных с использованием алгоритма обучения. Алгоритм обучения определяет, как модель обновляется на основе обратной связи от данных.
2.5. Оценка модели: ИИ-модель оценивается на тестовых данных, чтобы определить её точность и эффективность. Оценка модели может включать метрики, такие как точность, полнота и F-мера.
2.6. Развёртывание модели: обученная модель развёртывается в производственной среде, где она используется для решения реальных задач. Развёртывание модели может включать интеграцию с существующими системами и обеспечение безопасности.
Обучение искусственного интеллекта является сложным и многогранным процессом, который требует глубоких знаний в области компьютерных наук, математики и статистики. Однако благодаря развитию технологий и методов обучения, искусственный интеллект становится всё более мощным и эффективным инструментом для решения сложных задач.
3. Создание ИИ-модели на примере идентификации лиц.
Создание ИИ-модели, предназначенной для идентификации лиц, состоит из следующих этапов:
3.1. Сбор данных. На этом этапе собирается большой объём данных, содержащих изображения лиц людей (создание датасетов). Эти данные могут быть собраны из открытых источников, таких как социальные сети, или созданы специально для этой цели.
3.2. Предварительная обработка данных. Собранные данные проходят предварительную обработку, которая включает в себя следующие шаги:
– удаление искажений с изображений.
– приведение всех изображений к единому размеру и формату.
– преобразование изображений в числовые векторы, которые могут быть использованы моделью ИИ.
Предварительная обработка данных необходима для того, чтобы сделать данные более однородными и удобными для дальнейшей обработки.
3.3. Выбор модели. Для распознавания лиц используются различные модели ИИ, такие как свёрточные нейронные сети (CNN) и глубокие нейронные сети. Эти модели представляют собой математические функции, которые принимают на вход изображение лица и выдают на выходе вероятность принадлежности этого изображения к определённому человеку.
Выбор модели зависит от конкретных требований и условий задачи. Например, если требуется высокая точность распознавания, то следует использовать более сложные модели. Если же требуется быстрое распознавание, то можно использовать более простые модели.
3.4. Обучение модели. Модель обучается на предварительно обработанных данных с использованием алгоритма обучения. Алгоритм обучения определяет, как модель обновляется на основе обратной связи от данных. В процессе обучения модель «видит» множество изображений лиц и учится распознавать их особенности, такие как форма, размер и расположение глаз, носа и рта. Во время обучения модель сравнивает изображения лиц с эталонными изображениями, хранящимися в базе данных. Если изображение лица соответствует одному из эталонных изображений, то модель присваивает ему соответствующий идентификатор.
Процесс обучения повторяется многократно, пока модель не достигнет требуемой точности распознавания. После обучения модель может распознавать лица на новых изображениях с высокой точностью.
3.5. Тестирование модели. После обучения модель тестируется на новых данных, чтобы проверить её точность и эффективность. Если модель показывает хорошие результаты, она готова к использованию.
3.6. Развёртывание модели. Развёртывание модели – это заключительный этап работы искусственного интеллекта. На этом этапе модель внедряется в реальную систему распознавания лиц. Модель может быть интегрирована с другими системами, такими как системы контроля доступа, видеонаблюдения и т. п.
3.7. Распознавание лиц. Результатом распознавания является список вероятностей принадлежности изображения лица к каждому из лиц, известных модели. Чем выше вероятность, тем больше уверенность модели в том, что лицо принадлежит данному человеку.
4. Создание ИИ-модели на примере GPT.
GPT (Generative Pre-trained Transformer) – это языковая модель, которая используется для генерации текстов на основе заданного запроса.
4.1. Сбор данных. Для обучения модели GPT используются большие объёмы текстовых данных из различных источников, таких как книги, статьи, блоги и другие материалы. Эти данные используются для создания базы знаний, на которой будет основана работа модели.
4.2. Предварительная обработка данных. Собранные данные проходят предварительную обработку, которая включает в себя следующие шаги:
– удаление искажений из текстов;
– приведение всех текстов к единому формату и стилю;
– преобразование текстов в числовые векторы, которые могут быть использованы моделью ИИ.
4.3. Обучение модели. Модель GPT обучается на предварительно обработанных данных с использованием алгоритма обучения. Алгоритм обучения определяет, как модель обновляется на основе обратной связи от данных. В процессе обучения модель «видит» множество текстов и учится распознавать их структуру, стиль и тематику. После обучения модель GPT может использоваться для генерации текстов на заданные темы.
4.4. Получение запроса. Пользователь вводит запрос или тему, на которую он хочет получить текст. Это может быть что угодно: от простого вопроса до сложной задачи.
4.5. Преобразование запроса. Языковая модель преобразует запрос в формат, который она может использовать для генерации текста. Это может включать в себя токенизацию (разбиение текста на отдельные слова или фразы), лемматизацию (приведение слов к их базовой форме) и другие операции.
4.6. Использование контекста. Языковая модель использует контекст, полученный из обучения, чтобы генерировать текст, соответствующий запросу. Она анализирует структуру и стиль запроса, а также учитывает тематику и цель текста.
4.7. Генерация ответа. На основе запроса и контекста языковая модель генерирует текст. Этот текст может быть представлен в виде одного или нескольких предложений, абзацев или даже целых статей.
4.8. Оценка качества. Сгенерированный текст оценивается на соответствие заданной теме, структуре, стилю и другим критериям. Если текст соответствует требованиям, он считается качественным. Если нет, то модель может внести изменения в текст, чтобы улучшить его качество.
4.9. Повторная генерация. После доработки текст снова оценивается, и если он соответствует требованиям, то считается окончательным результатом. Если нет, то процесс повторяется до тех пор, пока не будет достигнут желаемый результат.
4.10. Вывод текста. Готовый текст выводится пользователю. Он может быть использован для различных целей, таких как общение, обучение, создание контента и т. д.