Lugege ainult LitRes'is

Raamatut ei saa failina alla laadida, kuid seda saab lugeda meie rakenduses või veebis.

Основной контент книги Machine Learning for Risk Calculations
Tekst PDF

Maht 463 leheküljed

0+

Machine Learning for Risk Calculations

A Practitioner's View
Lugege ainult LitRes'is

Raamatut ei saa failina alla laadida, kuid seda saab lugeda meie rakenduses või veebis.

€81,36

Raamatust

State-of-the-art algorithmic deep learning and tensoring techniques for financial institutions

The computational demand of risk calculations in financial institutions has ballooned and shows no sign of stopping. It is no longer viable to simply add more computing power to deal with this increased demand. The solution? Algorithmic solutions based on deep learning and Chebyshev tensors represent a practical way to reduce costs while simultaneously increasing risk calculation capabilities. Machine Learning for Risk Calculations: A Practitioner’s View provides an in-depth review of a number of algorithmic solutions and demonstrates how they can be used to overcome the massive computational burden of risk calculations in financial institutions.

This book will get you started by reviewing fundamental techniques, including deep learning and Chebyshev tensors. You’ll then discover algorithmic tools that, in combination with the fundamentals, deliver actual solutions to the real problems financial institutions encounter on a regular basis. Numerical tests and examples demonstrate how these solutions can be applied to practical problems, including XVA and Counterparty Credit Risk, IMM capital, PFE, VaR, FRTB, Dynamic Initial Margin, pricing function calibration, volatility surface parametrisation, portfolio optimisation and others. Finally, you’ll uncover the benefits these techniques provide, the practicalities of implementing them, and the software which can be used.

Review the fundamentals of deep learning and Chebyshev tensors Discover pioneering algorithmic techniques that can create new opportunities in complex risk calculation Learn how to apply the solutions to a wide range of real-life risk calculations. Download sample code used in the book, so you can follow along and experiment with your own calculations Realize improved risk management whilst overcoming the burden of limited computational power Quants, IT professionals, and financial risk managers will benefit from this practitioner-oriented approach to state-of-the-art risk calculation.

Logi sisse, et hinnata raamatut ja jätta arvustus
Raamat Ignacio Ruiz, Mariano Zeron «Machine Learning for Risk Calculations» — loe veebis. Jäta kommentaare ja arvustusi, hääleta lemmikute poolt.
Vanusepiirang:
0+
Objętość:
463 lk
ISBN:
9781119791393
Üldsuurus:
7.0 МБ
Lehekülgede koguarv:
463
Kustija:
Õiguste omanik:
John Wiley & Sons Limited
Audio
Keskmine hinnang 4,9, põhineb 84 hinnangul
Tekst
Keskmine hinnang 4,9, põhineb 336 hinnangul
Audio
Keskmine hinnang 4,5, põhineb 240 hinnangul
Tekst, helivorming on saadaval
Keskmine hinnang 4,7, põhineb 539 hinnangul
Tekst
Keskmine hinnang 4,3, põhineb 288 hinnangul
Tekst, helivorming on saadaval
Keskmine hinnang 4,9, põhineb 1935 hinnangul
Tekst, helivorming on saadaval
Keskmine hinnang 4,7, põhineb 401 hinnangul
Tekst PDF
Keskmine hinnang 0, põhineb 0 hinnangul