Loe raamatut: «Специфика взаимодействия тонкого и наноуровней микроструктурной организации веществ и их влияние на свойства материалов. Монография»

Font:

© Павел Борисович Шибаев, 2020

ISBN 978-5-0051-9126-7

Создано в интеллектуальной издательской системе Ridero

Введение

Машиностроение является одной из наиболее материалоемких отраслей промышленности, которая характеризуется широкой номенклатурой применяемых металлических и неметаллических материалов, а также изготавливаемых из них изделий и конструкций.

Полимеры занимают одно из ведущих мест среди конструкционных материалов в машиностроении. Так, потребление пластмасс в этой отрасли соизмеримо (по объему) с потреблением стали. Целесообразность использования полимеров в машиностроении определяется, прежде всего, возможностью удешевления продукции, экономии металла, в том числе благодаря уменьшению расходов при переработке его в изделия и существенному повышению коэффициента использования. Из таких пластических масс как полиэтилен, фторопласты, полиарилаты, фенопласты, волокниты, стеклопластики изготавливают обширный ассортимент деталей и узлов машин, а также технологическую оснастку различного назначения.

В материаловедении традиционно рассмотрение внутренней организации материала начинают с анализа его «тонкой» структуры. Сегодня различают микро- (включающую в себя тонкую (электронно-ядерную и молекулярную) и наноструктуры), мезо- и макроструктуру материала. При этом очевидно, что электронно-ядерная структура является базовой (исходной) для остальных вышеперечисленных, например, разделяя их на металлы и неметаллы.

В отличие от металлов специфика тонкой структуры полимерных материалов характеризуется не только наличием химических связей атомных остовов, но и межмолекулярного взаимодействия (ММВ) макромолекул между собой. Известно, что ММВ влияет на большинство физических и механических свойств полимеров, в частности, температуру стеклования, размягчения и плавления, растворимость, летучесть, поверхностные свойства, совместимость, вязкость расплавов, кристалличность, прочность, текучесть и т. д. При этом ММВ часто трактуется как остаточное, или вторичное, от химического взаимодействия, но их взаимосвязь не исследована.

Известно, что значимость оценки и прогнозирования конечных эксплуатационных свойств материала с целью обеспечения надежности и долговечности последнего является одним из основных условий его эффективного практического использования в конкретном устройстве или механизме. В частности, в настоящее время существуют методы количественной оценки физико-механических свойств полимерных материалов исходя из их химического строения (например, методы Ван Кревелена, Аскадского, Бицерано). Однако отсутствуют системные исследования зависимости физико-механических свойств материалов от типа связи элементов их тонкой структуры.

Таким образом, актуальность разработки подходов, позволяющих количественно оценивать физико-механические свойства полимерных материалов, при этом являющихся доступными для понимания широким кругом специалистов-материаловедов, нетрудоемкими и недорогими, достаточно очевидна и является сегодня важнейшей проблемой теоретического и практического материаловедения.

В рамках предлагаемой работы развивается подход по оценке физико-механических свойств полимерных материалов на основе элементов их тонкой структуры, который должен позволить максимально точно оценивать общий характер изменения их наиболее практически важных физико-механических свойств и дать возможность прогнозировать значения величин данных свойств в новых полимерных материалах.

Исходя из вышесказанного, в настоящей монографии поставлена следующая цель: выявление особенностей взаимодействия элементов тонкой структуры (атомных остовов и фрагментов макромолекул) широко применяемых в машиностроении полимерных материалов и их влияния на физико-механические свойства исследуемых материалов, включая:

Совершенствование методики расчета компонент химических связей в низкомолекулярных, а также высокомолекулярных соединениях, образующих полимерные материалы.

Подтверждение вторичности ММВ от химического взаимодействия и выявление характера влияния компонент химических связей на компоненты ван-дер-ваальсового (ВДВ) ММВ в веществах, образованных низкомолекулярными соединениями, а также высокомолекулярных соединениях и образуемых ими полимерных материалах.

Нахождение зависимости физико-механических свойств от компонент химической связи элементов тонкой структуры материала.

Апробация разработанных подходов, методик и полученных результатов исследования особенностей гомо- и гетероядерного взаимодействия элементов электронно-ядерной структуры широко применяемых в машиностроении материалов на основе низко- и высокомолекулярных соединений с учетом ее влияния на физико-механические свойства соответствующих материалов, имеющих большое значение в промышленности целом, а также в энергетике и машиностроении в частности.

Поставленные в монографии задачи по углубленному исследованию влияния тонкой структуры материала на его свойства отвечают современным тенденциям в развитии материаловедения [1].

Научная новизна исследования состоит в том, что в нем впервые установлено влияние компонент химической связи на величину ВДВ межмолекулярного взаимодействия (определяющих в совокупности специфику тонкого уровня структурной организации полимеров) и далее на ряд физических и механических свойств полимерных материалов, применяемых в энергетике и машиностроении.

Практическая ценность монографии. Опираясь на единую модель химической связи [2,3] элементов электронно-ядерной структуры материала, разработана методика расчета компонент химических связей в низко- и высокомолекулярных соединениях, образующих полимерные материалы. Это позволило связать компоненты химических связей с компонентами ММВ и установить их влияние на некоторые физико-механические свойства полимерных материалов. Таким образом, на основе найденных зависимостей свойств от компонент химической связи полимерных материалов с одинаковой конформацией макромолекулярной цепи была показана возможность оценки и прогнозирования их физико-механических свойств.

Показан характер влияния степеней ковалентности (Ск), металличности (См) и ионности (Си) химических связей на их жесткость и свойства биядерных соединений.

Совокупность полученных данных позволяет говорить о перспективности разрабатываемых подходов и методик для расчета компонент химических связей в низкомолекулярных жидкостях, а также высокомолекулярных соединениях, образующих полимерные материалы, и установления их влияния на энергию ММВ и физико-механические свойства в соответствующих веществах и материалах.

Апробация полученных результатов исследования

Разработанные методики переданы учреждениям и предприятиям, заинтересованным в их практическом применении (ФГУП ЦНИИГеолнеруд и др.), и внедрены в учебный процесс КГЭУ при проведении лекционных и практических занятий по курсу «Современное материаловедение», включая методические указания и контрольные задания для студентов-заочников [4].

Монография состоит из введения, пяти глав, выводов, списка использованной литературы и приложений, в котором приводятся материалы не вошедшие в основные разделы книги.

Во введении обосновывается актуальность темы исследования.

В первой главе проанализированы различные подходы к оценке физико-механических свойств полимерных материалов, показаны их достоинства и недостатки. Рассмотрено состояние вопроса оценки смешанных типов гомо- и гетероядерного химического взаимодействия элементов электронно-ядерной структуры материала (промежуточных между двумя и тремя предельными типами химического взаимодействия соответственно) и способы расчета каждой из трех компонент связи. Рассмотрена роль ММВ в полимерных материалах.

Во второй главе разработана методика, позволяющая рассчитывать распределение электронной плотности (ЭП) в молекулах низкомолекулярных жидкостей, а также звеньях высокомолекулярных соединений, образующих полимерные материалы, через компоненты образующих их химических связей. Описаны квантово-химические подходы для расчета ЭП и энергии ММВ.

В третьей главе исследовано влияние особенностей взаимодействия элементов тонкой структуры в некоторых низко- и высокомолекулярных соединениях, и органических полимерных материалах. Показано влияние компонент гомоядерной химической связи на ее жесткость и энергию ММВ и свойства ряда модельных низкомолекулярных соединений. А также влияние металлической и ионной составляющих гетероядерной химической связи на ее жесткость, энергию ММВ и свойства модельных низкомолекулярных соединений, низкомолекулярных жидкостей и полимерных материалов.

В четвертой главе показано влияние металлической и ионной составляющих гетероядерной химической связи на физико-механические свойства полимерных материалов: полиэтилен высокого давления (ПЭВД), полипропилен (ПП), поливинилиденфторид (ПВДФ), полиизопрен (ПИ), полиэтилентерефталат (ПЭТФ), поликетон (ПК), поливинилфторид (ПВФ), поливинилхлорид (ПВХ), полиакрилонитрил (ПАН), поливиниловый спирт (ПВС) и сополимеры этилена и 1-гексена.

В пятой главе всесторонне исследуется теория в кокорой электронно-ядерный и наноструктурный уровни организации металлических материалов рассматривается, как основа прогнозирования их свойств, усовершенствования технологий придания им новых заданных свойств.

Глава 1. Особенности структурной организации материалов, образованных молекулярными соединениями

1.1. Основные уровни структурной организации материалов

1.1.1. Полимерные материалы

Согласно единой классификации уровней структурной организации материалов, предложенной в работе [5] и уточненной позднее этими же авторами (табл. 1), в полимерах можно выделить следующие структурные уровни [5,6].

I. Микроструктура:

1 подуровень: электронно-ядерный. Данный подуровень является общим для всех материалов и образован элементами, размер которых лежит в диапазоне от ~1 до 5 Å (0,0001—0,0005 мкм): атомными остовами, химическими связями (обобществленными электронами) и точечными дефектами.

Электронно-ядерная структура полимеров описывает расположение атомных остовов и обобществленных электронов в химическом соединении в виде индивидуальной олиго- или макромолекулы. При этом специфика электронно-ядерной структуры в полимерных материалах (в отличие от металлов) заключается в том, в обобществленные электроны характеризуются большей локализацией между ядрами, обеспечивающей образование дискретной частицы – олиго- или макромолекулы.

Атомный остов — ядро с частью электронной оболочки атома, не принимающей участия в образовании химической связи (то есть необобществленные электроны в совокупности с ядром).

Обобществленные электроны – электроны, которые осуществляют химическую связь, возникающую вследствие перекрывания электронных оболочек, и являются общими для связываемых химических остовов.

Точечные дефекты (нульмерные) – дефекты кристаллической решетки, сравнимые с размерами атомных остовов.

2 подуровень: молекулярный. Этот подуровень образован фрагментами макромолекул (атомными группировками), между которыми действуют более слабые (по сравнению с химическими) внутри- и межмолекулярные ван-дер-ваальсовые и водородные связи. Размер элементов, образующих молекулярный подуровень микроструктуры, лежит в диапазоне от ~5 до ~10 Å (0,0001—0,0005 мкм).

Макромолекула – индивидуальное высокомолекулярное химическое соединение, цепеобразующие атомы которого связаны направленными химическими связями, характеризующееся многократным повторением одного или более типов атомов или групп атомов (составных звеньев) в цепи, в количестве, достаточном для проявления образуемым макромолекулами полимером комплекса специфических свойств, который остается практически неизменным при добавлении или удалении одного или нескольких составных звеньев [7].

Олигомолекула – отличается от макромолекулы меньшей степенью полимеризации (обычно не превышающей 100). Комплекс специфических свойств в олигомерах изменяется при добавлении или удалении одного или нескольких составных звеньев его олигомолекулы [7].

Согласно ИЮПАК – Международному союзу теоретической и прикладной химии (IUPAC – International Union for Pure and Applied Chemistry), – полимер определяется как «вещество, состоящее из молекул, характеризуемых многократным повторением одного или более вида атомов или групп атомов (составных звеньев), связанных друг с другом в количествах, достаточных для того, чтобы обеспечить набор свойств, которые не претерпевают значительного изменения при добавлении или удалении одного или нескольких составных звеньев» [8]. То есть, полимер представляет собой совокупность индивидуальных макро- и/или олигомолекул, связанных в полимерную систему посредством ван-дер-ваальсовых или водородных связей.

Полимеры, как правило, относят к веществам, образующим молекулярные кристаллы. Однако, в случае, когда упаковка макромолекул имеет складчатую или фибриллярную конформации, правильнее было бы говорить о ковалентно-молекулярных кристаллах (точнее – ковалентно- (меж- или внутри-) молекулярных), так как вдоль одного из периодов решетки действуют прочные химические, преимущественно ковалентные, связи (образующие электронно-ядерный подуровень микроструктуры), тогда как вдоль двух других периодов решетки действуют более слабые силы межмолекулярного взаимодействия (соответствующие молекулярному подуровню микроструктуры). Примером может служить полиэтилен, макромолекулы которого находятся в складчатой конформации, образуя ламель, и параметры элементарной решетки которого имеют следующие значения: a = 7.40; b = 4.93; c = 2.534 Å [9]. При этом вдоль периода с действуют химические, преимущественно ковалентные, связи, а вдоль периодов a и b – силы Ван-дер-Ваальса.

3 подуровень: наноструктура. К элементам, образующим наноструктуру в полимерах, можно отнести олиго- и макромолекулы, наночастицы, кристаллиты и ламели. Их размер лежит в широком диапазоне ~1 – 1000 нм.

Существует большое разнообразие наночастиц и способов их классификации. Например, по размерности их можно классифицировать на одномерные, характеризующиеся толщиной (пленки, покрытия и т.д.), двухмерные, характеризующиеся двумя размерами (трубки, волокна и т.д.) и трехмерные (трехмерные частицы, полые сферы и т.д.). Наиболее интенсивные исследования направлены на создание углеродных нанотрубок, которые уникальны своей жесткостью, прочностью и электронными свойствами, а также фуллеренов и дендримеров.

Вопрос о классификации кристаллических образований типа кристаллитов и ламелей до конца не решен [10]. Кристаллитами принято считать области трехмерной упорядоченности цепных макромолекул [10]. Также принято считать, что они являются минимальными дискретными элементами любой устойчивой надмолекулярной организации в твердых полимерах [9].

Ламели считаются кристаллическими образованиями более крупного масштаба, характеризующиеся пластинчатой формой [10]. При этом ламель, с одной стороны, можно считать образованной из кристаллитов. Однако вместе с тем ламель также можно рассматривать в качестве первичной надмолекулярной структуры, состоящей из «листов» и «лепестков», представляющих собой грани роста в направлении кристаллографических осей a и b и в свою очередь составленных из сложенных макромолекулярных цепей и упакованных параллельно. При этом одни и те же морфологические формы в одних случаях могут быть относительно независимыми структурными элементами, а в других – нет [9].

Для данного уровня структуры характерны линейные дефекты типа дислокаций в ламелях кристаллических полимеров или дисклинаций в аморфных полимерах.

II. Мезоструктура. Данный уровень структуры полимерных материалов составляют образованные ламелями небольшие аксиалиты, эдриты и сферолиты (размерами до нескольких десятков мкм). Дефектами, характерными для этого структурного уровня, можно, по-видимому, считать поверхностные дефекты типа дислокационных ансамблей.

III. Макроструктура полимеров образована более крупными надмолекулярными образованиями в виде крупных аксиалитов, эдритов и сферолитов размерами от нескольких десятков мкм и выше. Для этого уровня структурной организации полимерных материалов характерны объемные дефекты типа трещин, пор и т. д.

Для металлов можно выделить сходные уровни структурной организации, которые приведены в табл. 1. Из данных табл. 1 видно, что, так как металлы являются немолекулярными веществами, у них отсутствует молекулярный уровень структуры (в отличие от полимеров, образованных высокомолекулярными соединениями).

1.2. Химическое строение вещества

В 1861 году выдающийся русский химик Александр Михайлович Бутлеров на съезде немецких естествоиспытателей и врачей в Германии (г. Шпейер) выступил с докладом «О химическом строении веществ» [11]. В нем А. М. Бутлеров впервые изложил основы своей теории химического строения веществ (структурной теории), основывающейся прежде всего на обобщении значительного фактического материала по структуре органических химических веществ [11,12]. Таким образом, Бутлеров впервые ввел термин «химическое строение», продуманно дал ему определение и сформулировал основные положения своей теории.

Структурная теория химического строения раскрывает свою фундаментальность в последующих обобщениях, сделанных А. М. Бутлеровым [13]:

– молекула реальна и познаваема, строение ее можно и должно выразить единой рациональной (структурной) формулой;

– молекула – не механическая сумма атомов, а новое качественное образование, результат химического взаимодействия, при котором атомы, влияя друг на друга, изменяют свою структуру. В современном понимании атомы в процессе химического связывания превращаются в ядерные центры (или атомные остовы) химического соединения, связанные обобществленными электронами, т.е. химической связью [2,14,15];

– молекула не есть нечто застывшее, она динамична, то есть способна к превращению.

Значимость теории Бутлерова для естествознания трудно переоценить. Ведь именно она впервые сформулировала понятие «химическое строение», понимая под ним качественно новый уровень организации (строения) вещества. И далее формулируется взаимосвязь свойств веществ с их химическим строением: «Химическая натура сложной частицы определяется натурой элементарных составных частиц, количеством их и химическим строением» [16,17].

Сейчас, после введения А. М. Бутлеровым понятия «химическое строение», оно стало более глубоким и точным. Сегодня химическое строение – это не только порядок валентной связи атомов, их взаимное расположение и влияние в химическом веществе, но характер распределения электронной плотности (локализации обобществленных электронов) в межъядерном пространстве между химически связанными атомами, степени обобществления электронов, ковалентности, ионности и металличности связи, её направленность, длина, прочность и так далее [2].

В настоящее время существует ряд методов количественной оценки физико-механических свойств полимеров, на основе их химического строения.

1.3. Подходы к прогнозированию физико-механических свойств полимерных материалов на основе их химического строения

В настоящее время проблема количественной оценки физико-механических свойств полимеров является одной из актуальных. Существует ряд методов количественной оценки физико-механических свойств полимеров, в основе которых лежит химическое строение.

Подход, предложенный Ван Кревеленом и его сотрудниками [18], основан на идее так называемых «групповых вкладов», согласно которой записываются простейшие эмпирические выражения аддитивного типа, причем данная группа, находясь в разных полимерных звеньях, вносит один и тот же вклад в рассчитываемую характеристику (например, в температуру стеклования, плавления и т. д.). Ван Кревелен предложил использовать следующее уравнение:

где F – оцениваемое свойство, Fi – определяет идентичность и вклад функциональной группы i, а n– соответствует ее содержанию в молекуле.



Это – чисто эмпирический и интуитивный подход, который основан на аддитивных схемах. Как отмечает его автор, этот подход позволяет с хорошей точностью рассчитывать физические свойства многих линейных полимеров [158].

В дальнейшем этод подход получил свое развитие в работах других ученых. Р. О. Корреа, А. С. Телес, Ж. Е. Урике используют метод «групповых вкладов» второго порядка для ими же разработанного для оценки температуры стеклования полимеров [19,20]. Ученые присваивали групповые вклады 923 полимерам из 1018 и установили корреляцию между «групповыми вкладами» и свойствам полимеров, что позволило им рассчитать свойства у оставшихся 95 полимеров.

Для вычисления используют уравнение:



где F – оцениваемое свойство, Nc – общее число функциональных групп в строении полимера, Sc – число пар этих групп, Fi – вклад групп i в свойство F, G– вклад пары j в свойство F, ni и mj – количество групп и пар групп.

По мнению ученых, разработавших данный метод, он является простым, численно надежным, и в отличие от метода Ван Кревелена, использует меньшее количество функциональных групп и имеет простую процедуру вычисления, а также отсутствуют коррекционные члены.

Также ведутся работы по совершенствованию методов «групповых вкладов» первого [21,22] и второго порядка [23].

Существенным недостатком методов групповых вкладов является то, что для многих полимеров, особенно новых, параметры групповых вкладов отсутствуют, таким образом, их свойства нельзя рассчитать. Свойства сополимеров также не могут быть оценены.

Другой подход, развиваемый Дж. Бицерано [24], появился совсем недавно, оно основан на так называемых индексах связанности, что на практике свелось к поиску различных корреляций физических свойств со множеством правил, как находить коэффициенты корреляционных зависимостей. Также в уравнение корреляции дополнительно должны быть введены простые корреляционные индексы для специфических групп и структур для улучшения точности предсказаний. Свойства коррелируются в соответствии с уравнением: Свойства = (Σах) + (структурные параметры) + (атомные и групповые коррекционные члены), где а – коэффициенты, с – индексы связанности.

Большинство свойств коррелируются, используя всего четыре индекса связанности: оХ, оХv – нулевого порядка (атомные) и первого порядка (связи) 1Х и 1Хv [24].

Два индекса нулевого порядка атомных связей определяются следующим уравнением:



где Z – атомный номер, Zv – число валентных электронов в атоме, Nн – число атомов водорода связанных с i-м и j-м атомом, которые стоят рядом.

Данный метод предсказывает свойства путем сложения аддитивных вкладов атомов и связей вместо групп.

По мнению автора данного метода, он может предсказывать свойства многих полимеров, которые не позволял метод Ван Кревелена, а также позволяет оценивать свойства сополимеров.

Другое направление в физике и химии полимеров, связанное с количественным анализом влияния химического строения на физико-химические свойства полимеров и предсказанием этих свойств, развиваемый А. А. Аскадским [25—31], является полуэмпирическим. Согласно этому подходу, уравнение для расчета физических свойств получены на основании представлений физики твердого тела, а калибровка метода осуществляется с помощью физических характеристик полимерных стандартов, свойства которых хорошо изучены. В результате параметры уравнений имеют определенный физический смысл. Общим для всех уравнений является суммирование ряда атомных констант, характеризующих вклады в энергию ММВ, энергию химических связей, ВДВ объем и т. д. Таким образом, подход основан на представлении повторяющегося звена полимера в виде набора ангармоничных осцилляторов, которые описывают термическое движение атомов в поле внутри- и межмолекулярных сил, включая слабые дисперсионные, диполь-дипольные взаимодействия, водородные и химические связи [32—34].

Строго говоря, данный подход не может быть назван аддитивным в обычном понимании этого слова, поскольку рассчитываемые свойства не являются аддитивными по отношению к атомам и группам, из которых построено повторяющееся звено полимера.

Аддитивность применяется здесь только к таким характеристикам, которые действительно являются аддитивными (ВДВ объём, молекулярная масса, энергия ММВ и другие).

Как отмечает автор, этот подход позволяет с достаточной точностью оценить многие физические характеристики порядка 60 полимеров. Но при этом отмечает, что точность расчета необходимо повысить.

Однако число свойств, которые могут быть оценены этим методом, меньше, чем методом Ван Кревелена и Бицерано.

По мнению Кынина с сотр. [35] результаты расчетов по методу Ван-Кревелена и методу инкрементов, предложенному Аскадским достаточно близки.

Однако в представленных методах недостаточно полно учтено влияние такой важной характеристики полимеров, как энергия ММВ макромолекул полимера (энергия когезии). Влиянием этого фактора пренебрегают при расчетах плотностей и температурных характеристик полимеров, а при расчете параметра растворимости его влияние учитывается введением энергетических поправок на влияние специфических взаимодействий (например, водородных связей), причем введение таких поправок не имеет строгой регламентации и проводится произвольно.

Кынин с сотр. полагают [35], что достаточно удобной энергетической характеристикой полимеров является параметр растворимости dP. Именно он выступает как связующее звено между химическими свойствами и структурой. Очевидно, что энергия ММВ будет зависеть от природы и количества функциональных групп в элементарном звене полимера, что можно легко показать на примере зависимости параметров растворимости алифатических полиамидов от концентрации функциональных групп.

Также авторам очевидно, что удельная энергия межмолекулярного взаимодействия, а также и связанные с ней плотность энергии когезии и параметр растворимости полимера оказывают существенное влияние на свойства полимеров. Именно от структуры в значительной степени зависят термические, механические и физико-химические свойства материалов [35].

Таким образом, Кыниным с сотр. [35] предлагается физически обоснованный метод оценки изменения физико-химических и физико-механических свойств волокнообразующих полимеров при переменных условиях окружающей среды, изменяющихся в широких пределах, который основан на анализе изменения энергии межмолекулярного взаимодействия в полимере. Использование в качестве характеристики процесса такого универсального показателя, как параметр растворимости, связанный с энергией когезии, позволяет использовать найденные закономерности для новых полимерных материалов и взаимодействия полимеров с любыми низкомолекулярными веществами.

Но, как известно химическое строение вещества определяется, прежде всего, характером (типом) химического связывания атомов и их преобразованием в различные элементы структуры (химические элементы) вещества. Поэтому основу современной теории химического строения составляет учение о химической связи, как основного условия возникновения и существования химического соединения, характеризуемого определенной (химической) структурной организацией [14].

Tasuta katkend on lõppenud.

Vanusepiirang:
12+
Ilmumiskuupäev Litres'is:
16 detsember 2020
Objętość:
173 lk 89 illustratsiooni
ISBN:
9785005191267
Allalaadimise formaat:
Tekst, helivorming on saadaval
Keskmine hinnang 4,8, põhineb 11 hinnangul
Tekst
Keskmine hinnang 4,8, põhineb 6 hinnangul
Tekst, helivorming on saadaval
Keskmine hinnang 3,9, põhineb 13 hinnangul
Tekst, helivorming on saadaval
Keskmine hinnang 2,9, põhineb 10 hinnangul
Tekst, helivorming on saadaval
Keskmine hinnang 4,7, põhineb 131 hinnangul
Tekst, helivorming on saadaval
Keskmine hinnang 4, põhineb 79 hinnangul
Tekst
Keskmine hinnang 4,9, põhineb 24 hinnangul
Tekst, helivorming on saadaval
Keskmine hinnang 3,8, põhineb 2262 hinnangul
Tekst, helivorming on saadaval
Keskmine hinnang 4,5, põhineb 70 hinnangul