Tasuta

Табличный ПЛК.Табличное программирование контроллеров

Tekst
Märgi loetuks
Šrift:Väiksem АаSuurem Aa

1.2. Основы табличного программирования

Для начала рассмотрим таблицу, показанную на рис. 1. В левый столбец таблицы вводятся логические состояния входов контроллера, а в ячейках верхнего заголовка рассчитываются выходные значения. Состояние каждого выхода будем определять как логическое И по столбцу под ним.

Рис. 1. Пример таблицы


Чтобы таблица стала программой, внесем в нее некоторые изменения. Ячейки в теле таблицы, участвующие в расчете выходных значений, будем называть активными ячейками. Для обозначения активной ячейки используется символ «&», который в электронике и программировании обычно является символом битовой операции «логическое И». Чтобы увеличить наглядность таблицы, активные ячейки, состояние которых равно нолю, выделим синим цветом, а ячейки, состояние которых равно единице, – зеленым цветом. Таким же образом обозначим результат логического И по столбцу. Простая табличная программа представлена на рис. 2.


Рис. 2. Пример простой табличной программы


Пересчет таблицы выполняется следующим образом. Сначала идет обработка строк сверху вниз. Значение в каждой строке определяется входной переменной. В данном случае оно соответствует логическому уровню на соответствующем входе контроллера. При наличии в строке активных ячеек всем таким ячейкам строки присваивается полученное значение. По окончании перебора строк вычисляются значения выходных переменных – как логическое И по ячейкам столбца под каждой выходной переменой. В этом виде данные в таблице сложно назвать программой, однако под определение программы по ГОСТ 19.781-90[2] – «данные, предназначенные для управления конкретными компонентами системы обработки информации в целях реализации определенного алгоритма» – она подходит.

Для написания или создания программы в такой таблице сначала нужно заполнить первый столбец именами входных переменных или комментариями к ним и указать соответствующий номер входного контакта контроллера. Затем заполнить верхнюю строку-заголовок именами выходных переменных, также добавив номера контактов, соответствующие выходам контроллера. Теперь остается ввести в ячейки, которые будут участвовать в формировании выходных значений, символ «&». В принципе, все, программа написана. В результате поисков удобного формата таблицы, который бы легко воспринимался специалистом, даже не писавшим программу, из всех возможных операций в столбце было оставлено только логическое И. Это сделано для удобства быстрого анализа состояния программы в таблице. Если в столбце хоть одна активная ячейка принимает значение ноль, то результат тоже будет ноль. Если все активные ячейки столбца будут равны единице, то выходная переменная над столбцом также будет равна единице. Выделение синим цветом ячеек, находящихся в состоянии «ноль», и зеленым цветом ячеек в состоянии «единица» помогает увидеть всю картину целиком, быстро найти ячейки, цвет которых не соответствует вашим ожиданиям.

1.3. Триггерные ячейки

Чтобы зафиксировать однократное появление сигнала в логических цепях, используются триггеры. Базовым видом триггеров является асинхронный RS-триггер, состояние выхода которого меняется в зависимости от логических уровней на его входах, обозначаемых буквами R и S. Для установки на выходе RS-триггера единицы на вход «S» подают логическую единицу, а для сброса выхода в ноль логическую единицу подают на вход «R».

Добавим в табличную программу возможность фиксировать однократное появление сигнала. Для этого в каждом столбце создадим свой RS-триггер с одним выходом и произвольным количеством входов. Ячейки, реализующие триггерные операции в программе, будем называть триггерными ячейками. Табличная программа, использующая триггерные ячейки, представлена на рис. 3.


Рис. 3. Пример табличной программы, использующей триггерные ячейки


В верхний заголовок таблицы добавлена строка «RS». Каждая ячейка этой строки является выходом RS-триггера столбца, входы для которого находятся в ячейках под ним. Для того чтобы управлять этим выходом, в столбец добавлены ячейки, которые изменяют его состояние. Ячейки, использующиеся для сброса в ноль, будем обозначать символом «R», а для установки в единицу – символом «S». Ячейки «R» и «S» будем называть активными триггерными ячейками. Выберем для них следующее цветовое обозначение: серый для состояния «ноль» и пурпурный для состояния «единица». Ячейки в строке «RS» хоть и являются триггерными, но обозначены символом «&», так как они наравне с другими активными ячейками будут участвовать в логическом И по столбцу.

Начальное значение ячеек в строке «RS» равно единице. Это сделано для того, чтобы при отсутствии в столбце активных триггерных ячеек «R» и «S» ячейка «RS» не блокировала нулем результат логического И по столбцу. Выход триггера столбца, которым является ячейка «RS», управляется следующим образом. Если в столбце ячейка «R» принимает значение «единица», то значение ячейки «RS» в заголовке сбрасывается в ноль. Если же в столбце ячейка «S» принимает значение «единица», то значение ячейки «RS» устанавливается в единицу. При возвращении состояния ячейки «R» или «S» в ноль ячейка «RS» не меняет свое значение. Происходит «защелкивание». Так как внутренний интерпретатор проходит по таблице сверху вниз, то при многократном применении в столбце триггерных ячеек значение ячейки «RS» будет определяться нижней триггерной ячейкой. После учета состояния всех ячеек «R» и «S» столбца значение ячейки «RS» участвует в операции «логическое И» наравне с ячейками столбца, обозначенными символом «&».

1.4. Логические операции над входными переменными

Сигналы состояний устройств, такие как готовность к работе или предупреждение о неисправности,  могут быть сформированы с помощью логических операций над входными переменными. Применение логических операций над входными переменными не только расширяет функционал таблицы, но также уменьшает количество активных ячеек. В логическом И по столбцу теперь могут участвовать не значения входных переменных, а сигналы состояний механизмов и систем. Вместо использования нескольких активных ячеек, отражающих логические уровни дискретных датчиков какого-либо устройства, будет нужна всего лишь одна активная ячейка с сигналом готовности этого устройства. Такой подход упрощает программирование и, самое главное, улучшает читаемость программы.

Добавим в таблицу столбцы, необходимые для выполнения операций над входными значениями. Чтобы улучшить читаемость программы, немного изменим внешний вид таблицы. Вставим дополнительные строки, которые будут разделять программу на блоки, а комментарии в строках, имеющих активные ячейки, выделим светло-серым фоном. Фон в остальных ячейках оставим белым. Табличная программа с внесенными изменениями показана на рис. 4.


Рис. 4. Табличная программа с логическими операциями над входными переменными


Сначала рассмотрим возможность инвертирования входных логических сигналов для дальнейшего использования в программе. Одни сигналы, поступающие на вход контроллера, могут приходить с датчиков, имеющих нормально открытый контакт (НО), и при срабатывании такого датчика на входе контроллера будет уровень, соответствующий единице. Другие же датчики могут иметь нормально замкнутый контакт (НЗ), и при их срабатывании на входе контроллера появится ноль. Реализуемый в программе алгоритм может потребовать инвертированных входных сигналов. Если инверсии не требуется, запишем в ячейку операции знак «=». Для инверсии входного значения в ячейку операции запишем слово «NOT». В строке 10 таблицы на рис. 4 значение переменной b1 сначала инвертируется, а потом участвует в логической операции «исключающее ИЛИ».

Далее рассмотрим применение основных логических операций – «И», «ИЛИ», «исключающее ИЛИ» – для обработки входных переменных перед присвоением результата активным ячейкам таблицы. Так как для операций «И», «ИЛИ», «исключающее ИЛИ» требуются не менее двух аргументов, то две строки будут формировать аргументы, а результат поместим в третью строку. Конструкция будет напоминать арифметическое действие в столбик. Многострочные логические операции производятся над данными в столбце «Результат», и в этом же столбце записывается ответ. Расположение в одном столбце операндов и результата операции позволяет использовать полученный результат в качестве одного из операндов для следующей операции. На рис. 4 в ячейке «Результат» строки 4 будет ответ на логическое И содержимого двух ячеек, расположенных выше. Аналогично – в строке 8 для операции логическое «ИЛИ» и в строке 12 для операции «исключающее ИЛИ». В обычном для текстовых языков программирования виде это будет выглядеть следующим образом:

– строка 4: b3 = b1 AND b2 // 0 AND 1 = 0;

– строка 8: b4 = b1 OR b2 // 0 OR 1 = 0;

– строка 12: b5 = NOT (b1) XOR b2 // 1 XOR 1 = 0.

1.5. Инверсия выходных переменных

Иногда бывает необходимо, чтобы один из выходных сигналов контроллера был инвертирован – например, если в схеме устройства используется сигнал, состояние которого должно быть равным нолю, когда результат логического И по столбцу дает единицу. Чтобы реализовать такую возможность, дополним верхний заголовок таблицы двумя строками: «Операция» и «Результат» (рис. 5).

 

Рис. 5. Табличная программа с логическими операциями над входными и выходными переменными


Для выходных переменных, которым не требуется инверсия, в ячейку «Операция» запишем «=», а для переменных, значение которых нужно инвертировать, запишем «NOT». В приведенном на рис. 5 примере выходной переменной 3 присваивается инвертированное значение логического И по столбцу 3 с помощью операции «NOT».

1.6. Таймеры

Управление оборудованием часто требует жестких временных рамок. Иногда требуется задержка между последовательным включением механизмов или систем, иногда наоборот – между последовательным их выключением. Наиболее ответственные операции должны выполняться за определенное время, и если этого не происходит, то оператору выдается предупреждение или происходит остановка процесса. Для формирования временных интервалов в программах контроллеров используются различные таймеры. Наиболее распространенные – таймер с задержкой на включение TON (timer on delay), таймер с задержкой на выключение TOF (timer off delay), таймер, формирующий импульс заданной длительности, TP (timer pulse). Рассмотрим алгоритм работы каждого из них.

В исходном состоянии на выходе таймера с задержкой на включение TON будет ноль (рис. 6). При переходе сигнала на его входе из ноля в единицу, то есть по переднему фронту сигнала, запускается обратный отсчет времени начиная со значения, предустановленного в параметрах таймера.


Рис. 6. Временная диаграмма таймера с задержкой на включение TON


При достижении счетчиком нулевого значения на выходе таймера устанавливается единица. То есть сигнал, установившийся на входе таймера, появляется на выходе не сразу, а через заданное время. При возвращении входного сигнала в нулевое состояние выход таймера тоже будет равен нолю без какой-либо задержки. Если входной сигнал станет равным нолю до истечения предустановленного времени, то обратный отсчет прекратится, таймер перейдет в начальное состояние и сигнал на выходе не появится.

У таймера с задержкой на выключение TOF в исходном состоянии на выходе будет ноль (рис. 7). При переходе входного сигнала из ноля в единицу на выходе таймера будет единица без какой-либо задержки.


Рис. 7. Временная диаграмма таймера с задержкой на выключение TOF


А при переходе сигнала на его входе из единицы в ноль, то есть по заднему фронту сигнала, запускается обратный отсчет времени начиная со значения, предустановленного в параметрах таймера. При достижении счетчиком нулевого значения выход таймера перейдет в ноль. То есть установившийся на входе таймера ноль появится на выходе не сразу, а через заданное время. Если входной сигнал станет единицей до истечения предустановленного времени, то обратный отсчет прекратится, таймер перейдет в начальное состояние и на выходе останется единица.

В исходном состоянии на выходе импульсного таймера TP будет ноль (рис. 8). При переходе сигнала на его входе из ноля в единицу, то есть по переднему фронту сигнала, на выходе таймера будет единица без какой-либо задержки. Сразу же запускается обратный отсчет времени начиная со значения, предустановленного в параметрах таймера. При достижении счетчиком нулевого значения на выходе таймера устанавливается ноль. Таким образом, по переднему фронту будет сформирован импульс заданной длительности. Возвращение входного сигнала в нулевое состояние до истечения заданного времени не повлияет на формирование импульса. Если входной сигнал снова станет единицей и будет сформирован передний фронт, то таймер будет перезапущен и отсчет начнется заново.


Рис. 8. Временная диаграмма таймера, формирующего импульс заданной длительности, TP


Чтобы при необходимости в программе можно было формировать временные интервалы, добавим в таблицу три столбца. Первый соответствует типу используемого таймера, второй – установленному времени, третий – текущему состоянию внутреннего счетчика таймера. Дополнительно сократим названия колонок и отформатируем таблицу. Табличная программа с внесенными изменениями представлена на рис. 9.


Рис. 9. Пример использования таймеров


Результат операции над входными переменными сначала будет поступать на вход таймера, выходное значение которого будет присваиваться активным ячейкам строки. Если тип таймера не указан, то результат логической операции записывается в активные ячейки без задержки. Если результат входной логической операции не используется в активных ячейках строки, то ячейка этой строки в столбце «Знач.» остается пустой. Это сделано для того, чтобы в столбце «Знач.» отображались только те значения, которые используются для логического И по столбцам. В приведенной на рис. 9 таблице используются три таймера: таймер с задержкой на включение TON, таймер с задержкой на выключение TOF, таймер, формирующий импульс, TP.

Теперь результат логической операции над входными переменными записывается в ячейки столбца «Резул.», а логический уровень выхода таймера – в ячейки столбца с названием «Знач.». Тип применяемого в строке таймера указывается в столбце «Таймер». Время работы таймера записывается в миллисекундах в столбце «Устан.». При обратном отсчете времени текущее состояние внутреннего счетчика таймера будет выводиться в ячейку «Текущ.». Пример отображения обратного отсчета показан в строке 12 (рис. 9).

Установленная в строке 12 длительность импульса равна 2000 миллисекунд, или 2 секунды, до окончания импульса остается 1610 миллисекунд, или 1,61 секунды. По истечении этого времени значение в столбце «Знач.» по строке 12 перейдет из единицы в ноль. В строках таблицы 4 и 8 также используются таймеры, однако их текущее значение времени не отображается, следовательно, в данный момент таймеры в этих строках неактивны.

Можно заметить, что заголовок «Входной контакт» заменен на «Адрес», но цифры в столбце остались те же. Это сделано для того, чтобы максимально приблизить табличную программу к электрической схеме. Обычно при программировании контроллера с помощью графических языков программирования переменным присваиваются адреса с точностью до бита, хотя в среде программирования контроллера каждой переменной соответствует определенная структура размером в несколько десятков байтов. Назначение адресов с точностью до бита не более чем исторически сложившаяся практика. В табличной программе адрес входной или выходной переменной может соответствовать порядковому номеру контакта на разъеме контроллера. Тип переменной будет определяться ее адресом. К примеру, первые десять адресов будут принадлежать входным битовым переменным, а адреса с одиннадцатого по двадцатый – выходным битовым переменным.

2. Табличное программирование. Пример разработки программы

2.1. Простая программа управления шлагбаумом

Рассмотрим работу табличной программы на конкретном примере. Для этого создадим программу управления простым шлагбаумом с электроприводом. Сначала опишем алгоритм работы и основное оборудование такого шлагбаума.


Управление шлагбаумом производится нажимным двухкнопочным выключателем с фиксацией, возврат одной кнопки которого происходит при нажатии другой кнопки. Введем правило: шлагбаум может быть либо открыт, либо закрыт, остановку стрелы шлагбаума в промежуточном состоянии считаем аварийной. Если нажата кнопка «Открыть», то шлагбаум должен открыться, и мы сможем нажать только кнопку «Закрыть», так как кнопка «Открыть» зафиксирована в нажатом состоянии. Верхний и нижний концевые выключатели при срабатывании должны останавливать двигатель. Так как работа шлагбаума может нанести вред людям или имуществу, то необходимо предусмотреть в схеме аварийную кнопку и главный контактор, отключающий силовое питание при нажатии на нее. Аварийная кнопка должна иметь дополнительный контакт для сигнализации о том, что она находится в нажатом состоянии. Не углубляясь в схему реверсивного управления двигателем, поднимающего и опускающего стрелу шлагбаума, будем считать, что два выхода контроллера, обозначенные как «Вверх» и «Вниз», будут управлять движением стрелы.


Опишем алгоритм управления шлагбаумом. При нажатии на кнопку «Открыть» на выходе контроллера «Вверх» появляется единица и держится до срабатывания верхнего концевого выключателя. Аналогично, если будет нажата кнопка «Закрыть», на выходе контроллера «Вниз» появляется единица и держится до срабатывания нижнего концевого выключателя. Если во время опускания стрелы шлагбаума оператор увидит помеху, то он может кнопкой «Открыть» переключить двигатель на подъем стрелы. При нештатных ситуациях оператор нажимает аварийную кнопку.

Рассмотрим работу программы при переводе стрелы шлагбаума из открытого состояния в закрытое. Для открытого состояния шлагбаума управляющая программа представлена на рис. 10.


Рис. 10. Табличная программа управления шлагбаумом, соответствующая открытому состоянию шлагбаума


Можно увидеть, что питание включено, аварий нет, шлагбаум открыт, команды «вверх» и «вниз» равны нолю. По тому, что верхний концевой выключатель разомкнут, можно определить, что стрела шлагбаума находится в верхнем конечном положении. Нажатие на кнопку «Закрыть» выключит кнопку «Открыть», активные ячейки в таблице под командой «вниз» получат состояние «единица» и станут отображаться зеленым цветом. Логическое И по столбцу 2 даст в результате единицу. На выходном контакте 12 появится напряжение, соответствующее логической единице, и двигатель будет включен для опускания стрелы шлагбаума. Начнется движение вниз (рис. 11).


Рис. 11. Табличная программа управления шлагбаумом в момент нажатия кнопки «Закрыть»


После начала движения вниз верхний концевой выключатель перейдет в замкнутое состояние. Если не будет никаких действий со стороны оператора, движение стрелы вниз будет совершаться до срабатывания нижнего концевого выключателя. Табличная программа в момент движения стрелы вниз представлена на рис. 12.


Рис. 12. Табличная программа управления шлагбаумом в момент движения стрелы вниз


Как только стрела достигнет положения «закрыто», сработает нижний концевой выключатель. Соответствующая ему ячейка в столбце под командой «вниз» получит значение ноль, результатом логического И по этому столбцу станет ноль, и двигатель будет отключен. Таблица перейдет в состояние «закрыто» (рис. 13).


Рис. 13. Табличная программа управления шлагбаумом, соответствующая закрытому состоянию шлагбаума


На простом примере несложно увидеть, что благодаря табличному программированию прямо во время выполнения программы можно наблюдать состояния входов, выходов и цепей формирования выходных сигналов. Нет скрытых модулей обработки, полностью понятен алгоритм управления устройством. Во многих случаях нет необходимости в разработке графического интерфейса.

Как только на контроллер с табличной программой будет подано питание и начнет работать системная программа, на экран монитора будет выводиться таблица с программой пользователя, загруженной из постоянной памяти. Внутренний интерпретатор начнет пересчет таблицы, и с самого начала работы будет отображаться состояние программы, управляющей оборудованием, в реальном масштабе времени. Отпадает необходимость в подключении специального компьютера с установленной средой разработки и наличием исходной программы для контроля цепей формирования выходных сигналов. Пока может показаться, что табличное программирование пригодно для простых, даже примитивных алгоритмов, но это не так. Данный, упрощенный вариант программы имеет много недостатков и не может использоваться для управления реальным объектом. В таком упрощенном виде он представлен для демонстрации основной идеи применения табличного программирования. Далее будут рассмотрены более сложные примеры табличных программ.

 
2ГОСТ 19.781-90 «Обеспечение систем обработки информации программное. Термины и определения».