Изобретено в СССР

Tekst
12
Arvustused
Loe katkendit
Märgi loetuks
Kuidas lugeda raamatut pärast ostmist
Kas teil pole raamatute lugemiseks aega?
Lõigu kuulamine
Изобретено в СССР
Изобретено в СССР
− 20%
Ostke elektroonilisi raamatuid ja audioraamatuid 20% allahindlusega
Ostke komplekt hinnaga 11,68 9,34
Изобретено в СССР
Audio
Изобретено в СССР
Audioraamat
Loeb Василий Мичков
6,37
Lisateave
Šrift:Väiksem АаSuurem Aa

Рождение турбобура

Став замначальника техбюро, Капелюшников задумался над вопросом, который ставил в тупик не одного инженера. Можно ли эффективно вращать инструмент на конце буровой колонны, не затрачивая энергию на вращение всей колонны и даже просто привода ротора? На движение всех этих дополнительных деталей уходила львиная доля мощности, и КПД всей установки был крайне мал.

Он привлёк к работе двух подчинённых – инженеров Семёна Волоха и Николая Корнева. В считаные месяцы они втроём полностью рассчитали и разработали систему, позволяющую решить проблему. На конце колонны располагался цилиндрический кожух-утолщение, внутри которого находилась одноступенчатая турбина. Промывочная жидкость (конечно, уже не вода, как при Фовеле, а специальный глинистый раствор), проходившая под давлением через ствол колонны, заодно вращала турбину, от которой приводился наконечник бура! Идея казалась настолько простой, что непонятно было, почему никто не реализовал её на 10, 20 или даже 30 лет раньше.

Руководство «Азнефти» не заинтересовалось этой технологией, а вот Сергей Миронович Киров, на тот момент первый секретарь ЦК Компартии Азербайджана, к которому Капелюшников обратился за помощью, поддержал изобретательскую группу. По указанию Кирова на Мальцевском механическом заводе была изготовлена пробная партия турбобуров по проекту Капелюшникова, и в 1923 году новое устройство успешно показало себя на испытаниях.

Конечно, не обошлось без проблем. С одной стороны, в 1923–1924 годах было проведено несколько успешных бурений, в том числе в присутствии Кирова, и эффективный КПД при этом оказался заметно выше, чем при обычном роторном бурении. С другой – турбобур был технически сложным приспособлением, он перегревался, турбина с высокой вероятностью выходила из строя, и в производстве подобный механизм стоил значительно дороже простой колонны.

В получении патента на турбобур немалую роль сыграла политика. В 1922 году Капелюшников, Волох и Корнев подали заявку на совместное первенство в изобретении. Годом позже Капелюшников в одиночку (!) подал заявку в Великобритании, а в 1925 году, ещё до выдачи советского патента (заявки рассматривались долго), Волох и Корнев неожиданно отказались от своего первенства, написав официальное письмо в патентное ведомство. Таким образом, Капелюшников получил последовательно два индивидуальных патента – английский и советский. Странно то, что напарники Матвея Алкуновича отказались от изобретения ровнёхонько после того, как проект турбобура поддержал ЦК Компартии. Имена этих двух инженеров после середины 1920-х годов затерялись в истории. Можно предположить, что отказ был написан не без давления сверху, а в исчезновении Волоха и Корнева определённую роль сыграла изменившаяся обстановка в стране в преддверии грядущих репрессий. Хотя точно сказать, к сожалению, нельзя.

Всемирный успех

Вся слава досталась Капелюшникову. 11 сентября 1923 года он подал заявку и на американский патент, который получил в итоге в 1928-м (не могу не привести написание фамилии изобретателя в этом патенте: Capeliuschnicoff). Заметки о технологии стали появляться в ведущих технических изданиях мира, и уже в 1924 году американец Чарльз Шарпенберг, основатель компании Scharpenberg, получил первый сторонний патент на турбобур. В его системе использовалась многоступенчатая турбина – более эффективная, но и менее надёжная; в 1926 году при бурении в Калифорнии Шарпенберг впервые применил эту схему на практике.

В 1928 году Капелюшников и группа сопровождавших его инженеров триумфально продемонстрировали советскую технологию в США. Сам изобретатель выступил с лекцией на Международной выставке нефтяного оборудования в Талсе, а турбобур с огромным отрывом выиграл соревнование у роторного аналога на демонстрационном бурении Texas Oil Co. близ Эрлсборо (Оклахома). При этом советское руководство отказалось продавать технологию, хотя предложения поступали от самых разных нефтяных компаний.

В целом турбобур Капелюшникова был несовершенным – по причинам, описанным выше. Реально система могла работать не более 10 часов подряд, дальше перегрев приводил к расширению движущихся частей, которые и так тёрлись друг о друга, да ещё в окружении абразивных загрязнений, и механизм просто ломался, начинку приходилось заменять. Поэтому с точки зрения экономичности первые турбобуры проигрывали роторным бурам в долгосрочной перспективе.

Но идея получила развитие. Решением проблемы стали многоступенчатые роторы, независимо появившиеся по обе стороны океана. В СССР адептом системы и её спасителем стал молодой инженер Пётр Павлович Шумилов из Государственного исследовательского нефтяного института. В первой половине 1930-х годов он разработал турбобур с многоступенчатой аксиальной гидравлической турбиной – устройство было испытано в 1935 году и внедрено к началу 1940-х. В 1942 году Шумилов получил за свои разработки Сталинскую премию.

С тех пор и навсегда

Матвей Капелюшников прожил счастливую жизнь. Его не коснулись репрессии, он всегда находился на привилегированном положении. В 1931 году Капелюшников стал одним из ведущих инженеров, принимавших участие в строительстве первого в стране крекингового завода (и был впоследствии его директором), а с 1937-го и до смерти в 1959 году возглавлял лабораторию физики нефтяного пласта Института нефти АН СССР. Он получил ещё несколько авторских свидетельств, разработал множество устройств и технологий в своей отрасли.

А турбобур развивался уже без участия своего изобретателя. Разработки Шумилова подтолкнули технологию вперёд, и в 1957 году при Всесоюзном научно-исследовательском институте буровой техники (ВНИИБТ) появились сразу два подразделения, работавших в этом направлении: Отдел турбобуров и Лаборатория высокомоментных турбобуров. Если в 1930-е годы доля турбобуров в нефтяной отрасли составляла около 1,5 %, то сегодня чуть ли не три четверти всей буровой промышленности России базируется на турбинном бурении. Одной из ведущих мировых компаний по разработке подобного оборудования является пермское ЗАО «НГТ». Никакие социальные изменения в стране не сумели повредить советскому и российскому первенству в этой области. Турбобуры широко применяются и за рубежом: например, самый известный конкурент пермяков – американская компания Schlumberger. Кстати, знаменитая Кольская сверхглубокая скважина пробурена именно с помощью турбобура.

Сегодня различные методы вращательного бурения составляют до 80 % всей отрасли. Это и многократно усовершенствованный роторный метод, и турбинный, и комбинированный роторно-турбинный, и реактивно-турбинное бурение с применением одновременно нескольких турбобуров, и электробурение. Приятно, что один из глобальных прорывов в этой отрасли стал плодом русской инженерной мысли.

Глава 2. Подводная сварка


В 1887 году Николай Бенардос, уже будучи всемирно признанным изобретателем, проводил в своей мастерской публичные опыты по «электрическому паянию», как тогда нередко называли сварку. При этом присутствовал другой известный учёный – электротехник Дмитрий Александрович Лачинов, который очень интересовался технологией и также работал над её усовершенствованием. Замечу, что на тот момент Бенардос считался единственным авторитетом в отрасли: Славянов только начинал свои опыты на Пермских пушечных заводах и даже не был знаком с первопроходцем сварочной технологии.

Лачинов уже экспериментировал с резкой металлов электрической дугой и, в частности, обнаружил, что эта технология применима не только в воздушной среде, но и под водой, о чём и рассказал Бенардосу. Сотрудничая с Лачиновым, Бенардос в том же году провёл успешный опыт подводной сварки, но дальше дело не пошло. Эффективность процесса была крайне низкой, а у Бенардоса хватало других проблем: в то время он получал международные патенты на свой аппарат «Электрогефест», а кроме того, был занят совершенствованием основного процесса, сварки в воздушной среде. Поэтому эксперимент остался единичным.

С тех пор прошло 45 лет.

Метод Хренова

Несмотря на то что за без малого полвека технологию сварки многократно совершенствовали, в том числе и сам Бенардос, разрабатывались новые методы, ставились опыты в самых разных условиях, подводная сварка оставалась неисследованной. С нею было множество проблем, и основным препятствием на пути развития технологии, как нетрудно догадаться, становилось то, что дуга не могла стабильно гореть под водой. Более того, вода, в особенности морская, является отличным проводником и требует серьёзной изоляции всего электрооборудования. Ещё подводной сварке отчасти мешает давление: при повышенном давлении столб дуги сжимается и швы получаются выпуклые, неровные (собственно, название «гипербарическая сварка» связано именно с внешними условиями, то есть с повышенным давлением). Наконец, под водой крайне сложно удалять шлак. В общем, нужна была технология, кардинально отличная от привычной.

Как ни странно, ответы на все вопросы, относящиеся к подводной сварке, дал один человек – Константин Константинович Хренов. Как и Бенардос со Славяновым, Хренов был настоящим фанатом сварки и разработке различных её методов посвятил всю свою долгую жизнь.

Хренов закончил электрохимический факультет ЛЭТИ. Правда, поступал он до революции в Электротехнический институт императора Александра III, а выпустился в 1918 году уже из Петроградского института имени В. И. Ульянова (Ленина), поскольку вуз успел сменить название. Затем он преподавал в своей альма-матер на кафедре общей химии, а в 1928 году перевёлся в Московский электромеханический институт инженеров железнодорожного транспорта, где работал без малого 20 лет. Одновременно с этим с 1931 года Хренов преподавал в Бауманке (она тогда называлась Московским механико-машиностроительным институтом). Именно там, в Москве, он и сделал изобретение, принесшее ему всесоюзную славу и, к слову, Сталинскую премию II степени. Ряд источников пишет, что «технология разработана под руководством академика АН УССР Хренова», но на тот момент он не был не только академиком, но даже профессором – эту должность он получил в 1933 году, а академиком стал в 1945-м. И конечно, над технологией Хренов работал не один, и его взаимодействие с помощниками можно скорее назвать командной игрой, чем работой лаборантов под началом мудрого руководителя.

 

Так или иначе в начале 1930-х годов Хренов заинтересовался проблемой подводной сварки и решил её простым и остроумным методом. Дело в том, что если принудительно охлаждать зону горения дуги, то выделяемая дуговым разрядом энергия резко возрастает, компенсируя охлаждение. Это называется принципом минимума энергии Штеенбека или саморегулированием дуги. Рост выделения энергии приводит к испарению воды вокруг электрода и образованию газового пузыря, в котором дуга устойчиво горит! Компенсировать неизбежные тепловые потери можно повышением напряжения дуги. Опираясь на эту идею, Хренов в 1932 году разработал специальные электроды для подводной сварки, а в 1933-м опубликовал описание метода в журнале «Сварщик» (статья «Электросварка под водой»). Забавно, но на всё описание хватило пары страниц – это напоминает историю открытия Николаем Коротковым способа измерения артериального давления, который он тоже описал буквально в нескольких абзацах.

На практике

Первое практическое применение метода Хренова состоялось в 1936 году. Осенью 1935 года специалисты Экспедиции подводных работ особого назначения (ЭПРОН) поднимали в Северной бухте Севастополя затопленную на глубине 65 метров подводную лодку «Краб». «Краб» был первым в истории подводным минным заградителем (подробно о нём можно почитать в первой книге), а на дно его отправили в 1919 году поддерживавшие Врангеля английские военные, чтобы не оставлять уникальный корабль наступавшей Красной армии. Нашли «Краба» специалисты ЭПРОН совершенно случайно в 1934 году и первое время вообще предполагали, что это другая подлодка.

Подъём был сложным, многоступенчатым. Сперва под лодкой водоизмещением 560 тонн размывали грунт, затем поднимали в три захода. И во время второго захода корпус «Краба» неожиданно ударился обо что-то металлическое, не обнаруженное металлоискателями ранее. Это оказался болгарский пароход «Борис», лежавший на глубине 48 метров.

Стандартные методы подъёма для 1600-тонного парохода не подходили, и специалисты применили сверхсовременную технологию: к бортам судна инструкторы и курсанты Военно-морского водолазного техникума приварили методом Хренова специальные проушины, в которые и продели тросы для крепления подъёмных понтонов. Операция прошла успешно, а подводная сварка доказала свою состоятельность.

В 1937 году аналогичную процедуру провели с севшим на скалу ледокольным пароходом «Александр Сибиряков», за пять лет до того ставшим первым судном, которое преодолело Севморпуть за одну навигацию. В целом вплоть до войны подводная сварка применялась достаточно редко и в основном ЭПРОНом для спасательных и ремонтных работ. Но во время войны, ввиду многочисленных повреждений, получаемых кораблями, она стала незаменимой. К тому времени публикации Хренова уже были переведены на иностранные языки, и в 1940 году в ленинградском Машгизе вышла всеобъемлющая 400-страничная книга профессора Хренова и его коллеги, доцента Ярхо, «Технология дуговой электросварки».

В последующие годы

Способ, который разработал Константин Хренов, сегодня называется мокрой сваркой. Он многократно совершенствовал процесс, приведя его практически к современному состоянию – работал академик почти до самой смерти в 1984 году и за это время издал множество книг и монографий по сварочным процессам. Забавно, но факт: обычно академики подписываются в официальных документах и книгах «академик Иванов И. И.», но Хренову было разрешено в порядке исключения подписываться «Хренов К. К., академик», чтобы не возникало комического сочетания с фамилией.

За рубежом в то же время развивался метод сухой сварки, когда свариваемые соединения изолируются от воды мобильным боксом или камерой, заполненными газовой смесью. С одной стороны, такой подход позволяет использовать целый ряд технологий, невозможных при работе непосредственно в воде, с другой – он неприменим для значительного количества подводных объектов и довольно дорог. Так что на деле оба подхода сегодня используются более или менее поровну.

Помимо Хренова, над технологиями сварки работало немало выдающихся советских специалистов; наиболее заметными были Евгений Оскарович и Борис Евгеньевич Патоны, отец и сын. Борис Евгеньевич здравствует и сегодня – ему 100 лет, и более 60 из них он возглавляет основанный его отцом Институт электросварки имени Е. О. Патона в Киеве.

Глава 3. Маленькая дорога


Я родился и вырос в Минске – столице сперва БССР, затем – Республики Беларусь. В Минске есть Детская железная дорога имени К. С. Заслонова, открытая в 1955 году и действующая до сих пор. Константин Заслонов – для справки – был знаменитым белорусским партизаном, чья группа за первый год войны уничтожила почти сотню немецких поездов.

Так вот, в детстве путешествие по такой железной дороге казалось мне волшебной сказкой. Я ехал с бабушкой в вагоне и поражался тому, что дети управляют локомотивом, проверяют билеты, руководят движением, смотрят за станциями. Это был такой мир детей – как сегодня существуют «детские города», где дети играют во взрослые профессии. Позже, уже в подростковом возрасте, я потерял это «понимание»: детская железная дорога стала казаться мне советским пережитком, скукотищей, не идущей ни в какое сравнение с аттракционами Диснейленда. И только с возрастом я понял наконец настоящее назначение ДЖД – учить. Как в Суворовском учат молодых кадетов, так и на ДЖД готовят юных железнодорожников всех профилей.

И как же я удивился, узнав, что это исключительно советская идея. В Европе такие учреждения появились гораздо позже, а в США их нет и по сей день.

Истоки ДЖД

Официально первой в Советском Союзе (и в мире) детской железной дорогой является Тифлисская ДЖД. Строить её начали осенью 1934 года, а в апреле 1935-го по ней прошёл первый поезд (официальное открытие состоялось чуть позже – 24 июня). Это событие широко освещалось в советской прессе, и вообще про Тифлисскую ДЖД известно довольно много, вплоть до имени первого машиниста – им стал десятилетний Витя Сокольский. Инициаторами её строительства стали сотрудники Тифлисской детской технической станции: изначально планировалось построить макет железной дороги, но затем проект расширился до полноценной, хоть и уменьшенной для детей, ветки.

Тифлисская ДЖД была в полной мере детской. Все 400 метров её главного пути своими силами строили школьники под руководством взрослых. Дети самостоятельно делали шпалы, укладывали рельсы, строили вагоны и станции, причём школьники же их и проектировали! Эта работа делалась в счёт школьной практики, а также вместо некоторого числа уроков. На строительстве присутствовали учителя математики, помогавшие с расчётами, а также чертёжники, трудовики и т. д.

Тифлисская ДЖД имела две станции – «Пионерскую» и «Радостную», семафоры, стрелки, сигнализацию. Дети, в первую очередь отличники учёбы, выполняли функции машинистов, начальников станций, стрелочников, дежурных, кондукторов, кассиров, дорожных мастеров, носили соответствующую форму и, что главное, обучались в игре. При дороге существовал даже политотдел и собственная газета «Сталинский электровоз» с полным составом редакции. В общем, всё здесь было как у взрослых.

Результаты работы дороги стали видны уже в 1935 году: из 19 её строителей, которые в тот год оканчивали школу, 17 (!) поступили в транспортные вузы. Обучение в работе, обучение в игре, как бы это ни называлось, дало свои плоды – и детские железные дороги начали строиться по всей стране.

Пару слов нужно сказать о подвижном составе. Конечно, построить своими руками локомотив, в отличие от вагонов, дети не могли. Поэтому был использован купленный ранее немецкий узкоколейный паровоз № 1721 производства Arnold Jung Lokomotivfabrik, который переименовали в ЛК-1 в честь Лазаря Кагановича. В то время он был наркомом путей сообщения СССР, иначе говоря, министром транспорта, и в его честь называли всё подряд – от метрополитена до троллейбусов. Впоследствии подвижной состав менялся, но самый первый паровоз чудом сохранился и стоит ныне на пьедестале у входа в парк, правда раскрашенный в попугайские цвета.

Впоследствии дорогу удлинили на 800 метров и планировали перевести на электрическую тягу, но до войны не успели, а после стало как-то не до того. Сегодня Тбилисская ДЖД (а точнее, Малая закавказская железная дорога) по-прежнему функционирует, но уже не является детской в полном смысле слова. Несмотря на то что детям было интересно самостоятельно работать со сложной техникой и играть в настоящих железнодорожников, с начала 1990-х годов ДЖД превратилась в обслуживаемый взрослыми аттракцион. Однако факт остаётся фактом: она существует, та самая ветка, построенная детьми Тифлиса в 1934–1935 годах.

Расширение на Союз

В октябре 1935 года делегацию юных строителей из Тифлиса принял сам Каганович. Инициатива ему очень понравилась, и с его лёгкой руки в 1936 году вышло предписание о строительстве ещё 24 дорог, не считая расширения Тифлисской! Детские железные дороги должны были появиться в Киеве, Днепропетровске, Запорожье, Харькове, Москве (сразу три), Пятигорске, Оренбурге, Воронеже, Ростове-на-Дону, Таганроге, Ташкенте и т. д. Выражаясь современным языком, Каганович задал тренд. Более того, паровозостроительные предприятия СССР получили задание разработать и построить узкоколейные, на 750 миллиметров, машины специально для ДЖД.

Правда, замечу, что до войны удалось открыть, помимо Тифлисской, всего 13 дорог: в Красноярске, Днепропетровске, Гомеле, Кратове, Ереване, Мелитополе, Горьком, Иркутске, Свободном Амурской области, Ташкенте, Харькове, Ростове-на-Дону и Ашхабаде. В том же Киеве ДЖД открылась лишь в 1953 году. Некоторые дороги – в Гомеле и Мелитополе в частности – во время войны так пострадали, что их не стали восстанавливать. Всего за советский период было открыто более 60 детских железных дорог – на них работали паровозы, тепловозы и электровозы, длина колебалась от нескольких сот метров до 11,6 километра (в Свободном Амурской области), самыми разными были составы, станции, полотна, но все их неизменно отличало одно: их строили и на них работали дети – юные железнодорожники.