Loe raamatut: «Физика. Порядок вещей, или Осознание знаний», lehekülg 8

Font:

1.2.4. Эксперименты по обнаружению паруса и ветра взаимодействия

В. А. Кучин, М. В. Турышев и В. В. Шелихов ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ЗАКОНА СОХРАНЕНИЯ ИМПУЛЬСА

http://alaa.ucoz.ru/Skachivanie/ExpProvImpRuss.doc

Схема этого эксперимента приведена в главе 3.5. на рисунке (3.5.1). Суть его состоит в следующем: Тележка через блок и нить приводится в движение грузом, опускающимся под действием силы тяжести. Если нить привязана непосредственно к тележке, то тележка получает одно ускорение. Если же нить при этом одновременно раскручивает барабан на той же тележке, то она приобретает значительно меньшее ускорение. Формальное объяснение несложное. Во втором случае сила тяжести груза совершает дополнительную работу по раскручиванию барабана, поэтому на разгон тележки затрачивается меньшая работа.

Но работа это не материальный фактор, который может реально препятствовать движению тележки. Это всего лишь количественное описание процесса взаимодействия. А вот то, что физически тормозит тележку, количество работы, затраченное на раскручивание барабана, само по себе не объясняет. С нашей точки зрения это происходит следующим образом.

При раскручивании барабана происходит его деформация, которая приводит к возникновению у него паруса взаимодействия, что препятствует его раскручиванию. Поэтому сила взаимодействия начинает реализовываться в поступательное движение самой тележки. При этом парус установившегося кручения барабана поступательному движению практически мало препятствует, т.к., если одна сторона этого паруса тормозит поступательное движение, то другая фактически «гребёт» в сторону поступательного движения.

С началом поступательного движения появляется парус и у тележки. При этом сила опять переключается на кручение барабана, после чего складывается парус тележки и т. д. Это и создаёт эффект увеличения инертности массы системы, хотя её общее количество вещества не изменяется. Конечно, этот эффект можно объяснить и одним только врождённым свойством инерции. Но есть и другой эксперимент, который приводит Черняев А. Ф. в Русской механике (см. Рис 55).

Рис. 55


«Возьмем два ротора-гироскопа 1 и электромотор 2, ось которого укреплена неподвижно и перпендикулярно горизонту. На оси электромотора 3акрепим шарнирно планку 4 (рис. 55, вид сверху), по краям которой установлены гироскопы 1 с осями, параллельными оси электромотора. Вот и вся конструкция.

Раскрутим гироскопы против часовой стрелки до достижения ими постоянной частоты и после этого начнем вращать электромотором планку с гироскопами тоже против часовой стрелки, фиксируя изменение нагрузки электромотора. У меня при проведении этого эксперимента два гироскопа мощностью по 3 Вт так перегрузили 400-ваттный электромотор, что он сгорел, так и не достигнув нормативного количества оборотов».

Правда, на рисунке гироскопы, вопреки описанию автора вращаются по часовой, а мотор против часовой стрелки. Однако это очень важный момент, который в виду допущенной автором ошибки следует обговорить более подробно. В том виде, как это изображено на рисунке эффекта торможения привода может не быть. С внешней стороны гироскопы «гребут парусом» в сторону вращения, а препятствуют вращения только внутренние паруса гироскопов.

В этом случае эффект может быть обратным, т.е. гироскопы будут в целом содействовать вращению, т.к. подгибающие стороны расположены на большем рычаге, а тормозящие на меньшем. Поэтому для получения эффекта торможения необходимо соблюдать однонаправленность гироскопов и привода, о чём говорит автор. Однако для проверки нашего утверждения эффект облегчения работы привода так же является подтверждающим эффектом.

Похожий эксперимент проводил Пехотин И. Е. (см. его Рис.4). В этом эксперименте стальной шар выбрасывался пусковым устройством и через нить тянул за собой другой такой же шар. Дальность полёта шаров изменялась в зависимости от того была ли нить предварительно навита на буксируемый шар или буксировка осуществлялась без раскручивания буксируемого шара. При наличии навивки длина полёта системы уменьшалась на 30%.



Чтобы исключить какие-либо особенности вращательного движения и связанные с ним кориолисовые силы можно предложить эксперимент без вращающихся частей (см. Рис 1.2.5). На горизонтальном стержне-направляющей могут перемещаться два устройства. Верхний и нижний диск устройств соединены с центральной частью растянутыми и зафиксированными вертикальными пружинами. Между устройствами так же находятся зафиксированные до поры до времени горизонтальные пружины. Напряжённые пружины обозначены красным цветом.


Рис. 1.2.5


При отпускании замков пружин верхний и нижний диски ударяются о центральное тело устройств, которое может перемещаться вдоль горизонтальной направляющей (Рис 1.2.5 а). Как только деформация от взаимодействия верхнего и нижнего диска с центральным телом достигнет максимума, освобождается пружина в горизонтальном направлении (Рис 1.2.5 б). Разряженные пружины обозначены синим цветом. Предполагается, что в этом случае инертность устройства при его неизменной массе увеличится.

В эксперименте следует предусмотреть возможность включения горизонтальной пружины в разные моменты: до взаимодействия, в момент незавершённого взаимодействия и в момент полного взаимодействия. Это позволит точнее дифференцировать причину возможного эффекта увеличения инертности.

Поскольку вращения и соответственно гироскопических (кориолисовых) сил в этом эксперименте нет, то если предполагаемый эффект подтвердится, объяснить его можно только за счёт дополнительного паруса взаимодействия, распустившегося в результате взаимодействия верхнего и нижнего дисков устройств с его центральным диском. Причём в этом эксперименте сила привода между телами не тратится ни на вращение чего-либо, ни вообще на что-либо другое кроме поступательного движения одних и тех же тел. Следовательно, появление эффекта увеличения инерционности может быть объяснено только за счёт дополнительного паруса взаимодействия.

Кстати, парус распустится, как для сил взаимодействия между устройствам, так и для сил внешнего сопротивления среды. Поэтому эффект будет только в том случае, если воздействие этих сил на парус разное. Мы предполагаем, что большее воздействие будет с внутренней стороны.

Избыточное напряжение среды в зоне взаимодействия, которая определяет силы взаимодействия, формируемые за счёт среды, играет, по всей видимости, если и не теоретически определяющую, то количественно преобладающую роль в формировании сил взаимодействия в разных типах взаимодействий. О этом свидетельствует огромная разница сил в разных видах взаимодействия одной и той же материи с одной и той же массой.

Например, гравитационная постоянная определяет огромную разницу сил инертного и гравитационного взаимодействия одних и тех же масс. А поскольку материя и соответственно врождённое свойство материи преобразование напряжение-движение у всех одинаковых масс одни и те же, то остаётся предположить, что эту разницу может обеспечивать только силы взаимодействия, формируемые за счёт среды.

А вот сопротивление паруса взаимодействия, формируемого из среды, на наш взгляд, оказывает на общий инерционный эффект незначительное влияние, т.к. в момент начала взаимодействия скорости минимальные, а к его завершению парус практически исчезает. Поэтому на существующем сегодня техническом уровне обнаружить влияние паруса взаимодействия будет достаточно сложно, если не невозможно.

1.2.5. Парадокс абсолютно упругого удара

Парадокс абсолютно упругого удара некоторые авторы усматривают в том, что в ИСО, связанной с неподвижным телом-мишенью, ударное тело, движущееся со скоростью V полностью останавливается, передавая своё движение телу-мишени. При этом якобы нарушается третий закон Ньютона, в соответствии с которым тела якобы непременно должны разлетаться в разные стороны.

Один из таких авторов – Спурре А. Ф. в статье «Парадоксы физики» (http://www.sciteclibrary.ru/rus/catalog/pages/7113.html), предлагает разрешить этот парадокс формально математически, совместив логику двух ИСО. Это ИСО, связанная с центром масс взаимодействующих тел (ИСО ЦМ) и неподвижная ИСО, связанная со столом, на котором ещё до взаимодействия покоится тело-мишень. Назовём её условно абсолютной СО (УАСО).

Спурре пишет:

«На столе два одинаковых бильярдных шара массами m. После удара кием шар 1 начинает движение со скоростью V относительно неподвижного шара 2, с которым связана неподвижная система координат ХУ. Центр системы координат ХУ является материальным и обладает массой второго шара m. Шар 1 массой m и центр материальной системы ХУ образуют систему двух материальных тел, которая имеет ЦМ, расположенный в данном конкретном случае точно в середине расстояния между центрами шаров. Движение шара 1 со скоростью V в системе ХУ порождает движение и самого ЦМ в той же системе со скоростью Vцм = V / 2.

Исходя из этого, можно заключить, что шар 1 приближается к ЦМ со скоростью V / 2, но точно с такой же скоростью происходит сближение ЦМ и второго шара, т.е. в системе ЦМ скорость второго шара V / 2.

С учетом того, что ЦМ все время имеет скорость движенияVцм = V / 2 вправо, то в неподвижной системе ХУ, связанной со столом, скорость шара 1 (ударный шар – ААА) будет равна:

Vуд = Vцм – V / 2 = V / 2 – V / 2 = 0,

а скорость шара 2 (тело-мишень – ААА) будет равна сумме скоростей Vцм и V / 2, т.е.

Vм = Vцм + V / 2 = V / 2 + V / 2 = V

Вот таким образом, только с учетом движения самого центра масс системы, можно объяснить, почему шары разлетаются в разные стороны, согласно третьему закону Ньютона, но при этом один остается неподвижным, а другой движется со скоростью V (первого шара)».

В ИСО ЦМ названный парадокс действительно не просматривается. В ней оба тела изначально движутся к ЦМ со скоростью V / 2, а после взаимодействия с такими же скоростями разлетаются от ЦМ в полном соответствии с третьим законом Ньютона. Однако в ИСО ЦМ не видно и самого движения системы, т.к. относительно самой себя система естественно двигаться не может. Поэтому Спурре не забывает и про УАСО стола. Но в решении Спурре появляются новые парадоксы вместо кажущегося парадокса с якобы не выполнением 3-го ЗН, который с учётом физического смысла явления, вовсе парадоксом не является.

У Спурре ИСО ЦМ изначально движется в УАСО. При этом одно из двух тел системы всегда остаётся неподвижным относительно УАСО, не участвуя в общем движении ЦМ системы. Уже одно это логически противоречит поведению единого цельного образования, которое представляет собой замкнутая система. При этом абстрактное движение абстрактно-математической точки равновесия не связанных общим движением тел, Спурре складывает с реальным движением каждого тела, что сводит на нет его решение. Это один из новых парадоксов Спурре.

Замкнутые системы образуются исключительно только в непрерывных взаимодействиях, их составных частей, в пределах ограниченного в среднем пространства. Это означает, что в замкнутой системе непрерывно действуют два противоположных процесса – центробежный и центростремительный, что собственно и позволяет системам быть замкнутыми. При этом однократные взаимодействия образуют временную замкнутую систему только на период взаимодействия. До и после взаимодействия – это отдельные, не связанные между собой тела, сохранение импульса и энергии которых «до» и «после» – не гарантировано.

Другой парадокс решения Спурре заключается в том, что даже абстрактно-математическое движение его псевдо системы необъяснимо прерывается в момент взаимодействия. Спурре пишет, что в момент столкновения, сближение центров шаров относительно их ЦМ прекращается. При этом скорости шаров в ИСО ЦМ становятся равными нулю. А поскольку, как это ни парадоксально звучит, относительное движение абсолютно, а первоначально в УАСО задана именно относительная скорость шаров, один из которых в УАСО всегда неподвижен, то в момент столкновения, скорости шаров в УАСО также становятся равными нулю. Это также гарантированно разваливает решение Спурре.

Известный в физике принцип относительности имеет один, но очень существенный недостаток. Это чисто математический приём, за которым не всегда виден физический смысл явления, не зависящий от того сквозь какие очки в виде различных систем отсчёта его рассматривают. Науке сегодня неизвестна абсолютная система отсчёта, в которой, тем не менее, условно академически в чистом виде по умолчанию рассматриваются все основные законы физики. Поэтому принцип относительности обязательно должен опираться на физический смысл явлений.

Зная физический смысл явления инерции и принцип образования замкнутых систем, которые в однократных взаимодействиях образуются только на время взаимодействия, кажущийся парадокс абсолютно упругого удара можно легко разрешить именно в УАСО. Напомним также, что ньютоновские силы инерции поэлементной поддержки, которые основаны на врождённой инерции (см. главу 1.2.1.), препятствуют не только движению тел с положительным ускорением (тело-мишень), но и поддерживают уже имеющееся движение физических тел (ударное тело) при противодействии их движению. А из этого следует, совершенно очевидные приведённые ниже факты.

До выравнивания скоростей в УАСО поддерживающие ньютоновские силы инерции ударного тела, всегда больше препятствующих движению ньютоновских сил инерции тела-мишени. Они не дают телу-мишени оторваться от ударного тела. Этому способствует так же и истинные силы инерции мировой материальной среды, которые «подпирают» всю вновь образующуюся систему со стороны тела-мишени. В результате вновь образующаяся система постепенно приобретает общий импульс, в реальном физическом взаимодействии.

При (m1 = m2 = m) и скорости каждого тела, равной (V / 2) кинетическая энергия всей системы (m * (V / 2) 2 / 2 + m * (V / 2) 2 / 2 = m * V/ 4) уменьшается вдвое по сравнению с энергией заданного движения ударного тела (m) со скоростью (V), равной (m * V/ 2)!

В отсутствие градиента скоростей после их выравнивания кинетическая энергия ударного тела естественно уже не может быть передана телу-мишени. Следовательно, энергия ударного тела, которая не была израсходована при образовании системы, сохраняется в области упругой деформации. При этом объединённая система из двух тел будет двигаться равномерно и прямолинейно со скоростью равной половине первоначальной скорости ударного тела.

Именно этот факт реального движения новой системы и отсутствует в решении Спурре. У Спурре есть абстрактно-математическое движение точки равновесия отдельных тел, в то время когда самой системы ещё собственно и нет. При этом процесс перехода абстрактного в реальное у Спурре никак не объяснён, что вряд ли можно считать заявленным разрешением названного парадокса. Зато новый парадокс Спурре, в котором система якобы может двигаться вся в целом, но без участия в общем движении системы её составных частей – налицо. Если не вся, то – это и не система.

С выравниванием скоростей новая система приобретает уже не абстрактно-математическую, а реальную физическую скорость (V / 2). А вот абстрактная псевдо система Спурре, которая движется только одним своим телом, в момент нулевой относительной скорости между телами, наоборот должна остановиться. Во всяком случае у Спурре о движении объединённой системы с постоянной скоростью ничего не сказано. Очевидно, что двигаться в составе новой системы шары будут недолго. Но без упоминания этого факта невозможно объяснить распад объединённой системы, за что собственно и взялся Спурре.

Равномерно движущаяся система тел не испытывает сопротивления ньютоновских сил инерции ни со стороны ударного тела, ни со стороны тела-мишени. Остаётся только ничем не скомпенсированное внутреннее напряжение. Поэтому после выравнивания скоростей начинается разрядка внутреннего напряжения. На этапе разрядки напряжения каждая из частей системы получит такие же по абсолютной величине приращения движения и соответственно такие же приращения энергии, как и на этапе её формирования.

Ударное тело получит отрицательный импульс движения, равный по величине её оставшемуся положительному импульсу. А тело-мишень получит положительный импульс равный по величине её уже приобретённому вместе с системой положительному импульсу. В результате после полной разрядки напряжения ударное тело на абсолютно законных основаниях полностью остановится в УАСО, а тело-мишень также без каких бы то ни было парадоксов приобретет в УАСО скорость ударного тела (V).

В УАСО можно без каких-либо парадоксов смоделировать и неупругое взаимодействие. Если после выравнивания скоростей блокировать разрядку области упругой деформации каким-либо искусственным механическим способом, то вторая половина кинетической энергии ударного тела, остающаяся после выравнивания скоростей, сохраняется внутри системы до тех пор, пока не будет выведена из нее в виде излучения, теплового рассеивания или каким-либо иным способом. Если же разорвать механическую связь до того как энергия ещё не успеет сколько-нибудь заметно рассеется, то мы вновь получим упругое взаимодействие.

Спурре утверждает, что только в системе ЦМ законы сохранения импульса и энергии имеют реальный физический смысл и точные количественные значения. Однако, как показано выше, физический смыл сохраняется в любой ИСО. С учётом физического смысла явления всегда можно определить и точные количественные значения всех законов в любой системе. Для этого достаточно различать внутренние процессы, которые в чистом виде действительно виднее в ИСО ЦМ, и внешние процессы, которые происходят уже с самой системой ЦМ в целом.

Ну, а если физический смысл явления пока не известен, то никакие СО в этом не помогут. В этом случае необходимо только дальнейшее изучение.

1.2.6. Заключение по явлению инерции

В заключение подраздела о механизме явления инерции разберём два примера, приведённых классической физикой в лице профессора Н. В. Гулиа. Эти примеры призваны, по его мнению, окончательно убедить всех в нереальности сил инерции. Профессор Гулиа в «Удивительной физике» в главе «Инерция: сила или бессилие?», негодуя по поводу довольно часто встречающегося даже в науке мнения о том, что сила инерции является реальной силой, относит это к несуразным казусам, и приводит пример одного из таких, по его мнению казусов:

«Но и при обычном прямолинейном движении таких казусов сколько угодно, и свидетелем одного из них был автор. Дело происходило на защите кандидатской диссертации по теории автомобиля. Молодой диссертант делал доклад по работе, пользуясь формулами, написанными на плакатах. Естественно, диссертант воспользовался принципом Даламбера, по-видимому, даже не подозревая об этом. И уравнение тягового баланса ускоряющегося автомобиля он записал в том виде, как это делается и в большинстве учебников:

Рk (сила тяги) = Рf (сила сопротивления качению) + РV (сила сопротивления воздуха) + Рj (сила инерции).

Шутник – член Ученого Совета – спрашивает диссертанта:

– Вот у вас сила тяги равна сумме всех сопротивлений. Стало быть, автомобиль находится в равновесии, он неподвижен. Почему же вы говорите, что машина разгоняется?

Диссертант долго думал, а потом не нашел ничего лучшего, как сказать:

– Это только теоретически – в равновесии. А на самом деле сила тяги чуть-чуть больше сопротивления, вот он и движется!

Хохот был такой, что проснулись даже обычно спящие члены Совета. А правильный ответ должен быть таким:

– Сила инерции фиктивная, несуществующая. Она добавлена согласно принципу Даламбера для облегчения решения задачи (рис. 44). И вся разница между силой тяги и силами сопротивлений идет на разгон автомобиля, вот он и ускоряется! Но разве виноват диссертант, что он учился по учебникам, где все те же ошибки. Не понимают многие инженеры принцип Даламбера, вот и «оживают» несуществующие силы инерции!»

Хорошо хоть Гулиа сам признал, что силу инерции считают физически реальной не только неграмотные изобретатели инерцоидов и другие неграмотные люди, которые не читали учебников. Оказывается «все те же ошибки» можно почерпнуть и из самих учебников, как говорит сам Гулиа. Надеемся, что после этого автора не будут обвинять в голословности, по поводу его мнения о том, что в современной физике существует—таки двойственное понятие силы инерции и в том, что, заявляя об этом, он якобы просто не правильно истолковывает работы классиков теоретической механики: «Каждый видит в книге свою фигу». В этом автора обвинили на известном физическом форуме МГУ.

Однако оказывается, современный нам и достаточно известный в мире науки профессор классической механики тоже признает, что в учебниках по этому поводу нет исчерпывающей ясности. Правда сам Гулиа двойственность понятия инерции категорически отрицает и никак не хочет признать, что в реальной действительности все—таки «оживают» несуществующие силы инерции», а точнее сказать живут в ней постоянно с самого сотворения нашего мира, если, конечно же, таковое когда—либо было. Гулиа никак не может понять, что абсолютно все силы в природе возникают исключительно только, благодаря явлению инерции. Свойство материи преобразование напряжение—движение это и есть инерция, которая в современной физике ошибочно воспринимается, как противодействие движению при его возникновении и противодействие торможению движения.

В реальной действительности противодействия нет. Есть естественное превращение (преобразование) силы (напряжения) в движение. При этом напряжение расходуется, превращаясь в движение. Поэтому даже без учёта сопротивления мировой материальной среды поддерживать даже неизменное ускорение возможно только за счёт непрерывного пополнения расходуемого напряжения. Формально сила при этом не меняется по абсолютной величине, что связано с классической моделью неуравновешенного движения, в которой источник постоянной силы академически движется синхронно с ускоряемым телом, не неся затрат на собственное ускоренное синхронное с телом движение.

В реальной действительности для получения новой порции даже неизменного ускорения, после превращения в него затраченной на него силы, необходима и новая сила. Об этом свидетельствует непрерывный рост кинетической энергии ускоряющегося тела, несмотря на видимую неизменность силы и ускорения. Неизменна только мгновенная абсолютная величина напряжения-силы. А её количество при этом непрерывно пополняется взамен израсходованного, и эквивалентно это количество – количеству вновь вкладываемого в разгон ускоряемого тела – движения ответного тела. А принцип Даламбера не позволяет увидеть эту реальную картину, такого равновесного внешне, но такого не равновесного по энергии движения!

Постоянство силы для неизменного ускорения ускоряемого тела обеспечивается в процессе регулирования взаимодействия. Но запускает такое регулирование только большая по абсолютной величине неуравновешенная сила опорного тела по сравнению с постоянным в среднем значением силы в процессе регулирования. Мы уже не говорим о прямом сопротивлении мировой материальной среды, на преодоление сопротивления которого также расходуется напряжение взаимодействия. Поэтому раз уж автомобиль движется ускоренно, то «сила тяги…» действительно «…чуть—чуть больше сопротивления, вот он и движется».

Таким образом, ответ диссертанта, пусть неосознанный и интуитивный, гораздо ближе к истине, чем мнение Ученого Совета, основанное на «голой» математике Даламбера. Поэтому, скорее всего, уважаемые члены Совета в конечном итоге смеялись и до сих пор смеются над самими собой. А вот ответ Гулиа, заключающийся в том, что сил инерции в природе физически не существует, является абсолютным казусом. Его «Удивительная физика» воистину удивительна и необъяснима!

***

Есть ещё один пример неправильной интерпретации явления инерции профессором Гулиа Н. В. Будучи ярым противником реальности сил инерции, профессор Гулиа в «Удивительной физике» в главе «Кто стоял на плечах гигантов?» пишет:

«По прекрасному ровному шоссе едет автомобиль с выключенным двигателем (как говорят, «накатом»), медленно сбавляя скорость. И ревя двигателем от натуги, бульдозер тащит перед собой целую гору песка, но движется равномерно и по прямой, хотя и медленно (рис. 26). Которое из этих движений можно назвать движением по инерции? Да конечно, второе, хотя так и хочется указать на первое. Самое главное, что тело движется равномерно и прямолинейно. Все, этого уже достаточно, больше ничего и не нужно. Автомобиль в первом примере хоть и медленно, но замедляется. Следовательно, силы, действующие на него, не скомпенсированы: сопротивление есть, а силы тяги – нет. А на бульдозер действует много тел, каждое со своей силой, но все силы скомпенсированы, их равнодействующая равна нулю. Вот почему он и продолжает двигаться равномерно и прямолинейно, то есть по инерции.


Рис. 26. Движение автомобиля накатом и загруженного бульдозера»


Именно этот пример привел Гулиа, делая свое уточнение к классической формулировке первого закона Ньютона (см. выше). Однако:

Во—первых, не бульдозер движется равномерно и прямолинейно, а система тел «бульдозер – гора песка», поэтому заострять внимание на множестве абстрактных сил, действующих на бульдозер при равномерном движении всей системы «бульдозер – гора песка» физически не корректно. Если внутри системы все силы скомпенсированы, то для движения системы в целом они фиктивные, т.е. на систему «бульдозер – гора песка» не действуют никакие силы. Это намного ближе к определению равномерного движения Ньютона, чем представления Гулиа.

А во—вторых, о непричастности первого закона Ньютона к движению по инерции в отсутствие мировой материальной среды мы уже говорили выше. Движение при полном отсутствии сил не может быть физически отнесено к движению под действием сил инерции, т.к. «ничто» (фиктивные силы инерции) не может являться смыслом или основой «чего—то» (движения). Такое движение, как мы отмечали выше, в лучшем случае происходит под «охраной» сил инерции, возникающих только при нарушении равномерного движения в соответствии со вторым законом Ньютона (см. гл. 1.1).

С точки зрения существующей теории движения система «бульдозер—гора песка» движется под действием абстрактной академической силы тяги, поэтому сам процесс формирования силы тяги бульдозера за счет его взаимодействия с Землей в существующей математической модели движения не рассматривается. Для современной теории движения достаточно того, что абстрактно назначенная сила тяги просто есть. То же самое можно сказать и о силе сопротивления движению системы «бульдозер—гора песка». В существующей математической модели движения она также никак не связана с инерцией Земли. Это просто абстрактная сила сопротивления, образующаяся за счет сил трения с абстрактной дорогой.

Вот и получается, что в классической физике абстрактной силе тяги противодействует такая же абстрактная сила трения. Однако в реальной действительности без истинных сил инерции не может возникнуть, ни сила тяги бульдозера, ни сила трения горы песка. При этом в реальной действительности противоположно направленные сила тяги и сила трения уравновешивают друг друга не в каждый момент времени.

Опорным телом для движения системы бульдозера является Земля, с которой он взаимодействует посредством контакта с дорогой. Через силу тяги, бульдозер фактически периодически подключает к взаимодействию массу всей Земли. Это позволяет ему получить во взаимодействии с Землёй силу тяги и ускорение, необходимые для преодоления сопротивления массы горы песка и её трения с Землёй. Однако при разгоне системы трение горы песка увеличивается, т.е. она со своей стороны так же подключает к взаимодействию дополнительную массу Земли. При этом скорость системы падает, а затем, поскольку это приводит к уменьшению трения, вновь возрастает под действием силы тяги бульдозера.

Таким образом, за счет силы тяги бульдозера, взаимодействующие стороны: подсистема «бульдозер – гора песка» и Земля периодически разгоняются, а за счет дополнительного сцепления горы песка с Землёй, возрастающего при ускорении, и подключения дополнительной инерционной массы Земли в обратном направлении вновь тормозятся. Это и есть отрицательная обратная связь, без которой никакое регулирование, в том числе и равномерного движения в присутствии реальных сил не возможно.

Такое регулируемое движение вряд ли можно считать равномерным движением в отсутствие сил. Оно равномерное в среднем, и силы в нём отсутствуют так же только в среднем. Так что ответ на вопрос о том, какое из движений в приведенном примере является движением по инерции, не так прост, как это предлагает считать профессор Гулиа, который утверждает, что для этого достаточно только факта равномерного и прямолинейного движения:

«…Самое главное, что тело движется равномерно и прямолинейно. Все, этого уже достаточно, больше ничего и не нужно…».

Неравновесное движение автомобиля «с выключенным двигателем» отличается от движения подсистемы «бульдозер – гора песка» с работающим двигателем только не симметричным регулированием реальных сил торможения и сил инерции поэлементной поддержки автомобиля. Из этого следует, что ни одно из движений в приведённом примере, строго говоря, не является движением по инерции в его традиционном понимании, т.е. при полном отсутствии неуравновешенных сил. Только абстрактная сила тяги и сила сопротивления могут полностью абстрактно компенсировать друг друга в каждый момент времени, что равносильно их полному отсутствию. Однако в реальной действительности абстрактных сил нет, а равновесие реальных сил не может быть идеальным, т.к. оно регулируется только в процессе взаимодействия.

А вот если под движением по инерции понимать движение под действием сил инерции, которыми, как показано выше являются все силы во вселенной, то и в том и в другом случае действительно происходит движение по инерции. Благодаря силам инерции возможна сила тяги бульдозера, обеспечивающая в среднем равномерное движение в условиях симметричного регулирования и благодаря силам инерции в условиях не симметричного регулирования замедляется движение автомобиля с выключенным двигателем. В этом смысле в каждом из этих случаев происходит движение по инерции, т.е. под воздействием сил инерционного происхождения. Однако в этом случае законом инерции следует считать не первый, а второй закон Ньютона.

Таким образом, в бытовом понимании движения по инерции, которое подразумевает реальные силы, противодействия изменению состояния движения, скорее всего, заключена народная мудрость, которая предполагает реальное преодоление сил сопротивления движению за счет «обычных» сил инерции поэлементной поддержки. А вот движение по инерции в отсутствие каких—либо сил осуществляется только для того, кто не прислушивается к народной мудрости и судит о явлениях природы только по академическим законам и математическим формулам.