Loe raamatut: «Структура реальности. Наука параллельных вселенных»

Font:

Издательство благодарит Russian Quantum Center, Сергея Белоусова и Виктора Орловского за помощь в подготовке издания

Редактор Игорь Лисов

Редактор Russian Quantum Center Александр Сергеев

Руководитель проекта А. Тарасова

Корректор М. Миловидова

Компьютерная верстка А. Фоминов

Дизайнер обложки Ю. Буга

© David Deutsch, 1997

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2015

* * *

Посвящается памяти Карла Поппера, Хью Эверетта и Алана Тьюринга, а также Ричарду Докинзу. В этой книге их идеи восприняты всерьез.


Предисловие

Если и существует единая мотивация для взгляда на мир, изложенного в этой книге, она заключена в том, что главным образом благодаря ряду экстраординарных научных открытий мы обладаем сейчас некоторыми чрезвычайно глубокими теориями о структуре реальности. Если мы хотим понять мир не поверхностно, а более глубоко, нам помогут эти теории и разум, а не наши предрассудки, приобретенные мнения, и даже не здравый смысл. Наши лучшие теории не только истиннее здравого смысла, но в них гораздо больше смысла, чем в здравом смысле. Мы должны воспринимать их серьезно: не просто как практическую основу соответствующих областей, а как объяснение мира. Я полагаю, что мы сможем достичь величайшего понимания, если будем рассматривать их не по отдельности, а совместно, поскольку они связаны неразделимым образом.

Может показаться странным, что это предложение – постараться выработать рациональное и самосогласованное мировоззрение на основе наших лучших, наиболее фундаментальных теорий – является совершенно беспрецедентным и вызывает серьезные разногласия. Но на практике получается именно так. Одна из причин заключается в том, что каждая из этих теорий, когда ее воспринимают серьезно, влечет крайне контринтуитивные следствия. Поэтому предпринимаются всевозможные попытки избежать встречи с этими следствиями: теории специально изменяют или дают им иные интерпретации, произвольно сужают область их применимости или просто применяют на практике, не делая далеко идущих выводов. Я буду критиковать некоторые подобные попытки (ни одна из которых, по-моему, и гроша ломаного не стоит), но только в том случае, когда такая критика является удобным способом объяснения самих теорий. Главная цель этой книги – не защищать эти теории, а исследовать, какой была бы структура реальности, если бы эти теории оказались истинными.

Благодарности

Развитию идей, описанных в этой книге, в значительной степени способствовали беседы с Брайсом ДеВиттом, Артуром Экертом, Майклом Локвудом, Энрико Родриго, Деннисом Сиамой, Фрэнком Типлером, Джоном Уилером и Колей Вулфом.

Я выражаю благодарность своим друзьям и коллегам Рут Чанг, Артуру Экерту, Дэвиду Джонсон-Дэвису, Майклу Локвуду, Энрико Родриго и Коле Вулфу, своей маме Тикве Дойч и своим издателям Кэролайн Найт и Рави Мирчандани (издательство Penguin Books) и Джону Вудраффу, и особенно Саре Лоренс за внимательное и критичное чтение первых черновиков этой книги, а также за множество предложенных ими исправлений и улучшений. Также я признателен всем, кто читал и комментировал части рукописи, включая Харви Брауна, Стива Грэхема, Росселлу Лупаччини, Свейна Олава Нюберга, Оливера и Гарриет Стримпел, а в особенности Ричарда Докинза и Фрэнка Типлера.

1. Теория Всего

Помню, когда я был еще ребенком, мне говорили, что в древние времена очень образованный человек мог знать все, что было известно. Кроме того, мне говорили, что в наше время известно так много, что ни один человек даже за всю свою жизнь не в состоянии изучить больше крошечной частички этого знания. Последнее удивляло и разочаровывало меня. Я просто отказывался в это поверить. Вместе с тем я не знал, как оправдать свое неверие. Но такое положение вещей меня определенно не устраивало, и я завидовал древним ученым.

Не то чтобы я хотел заучить все факты, перечисленные в энциклопедиях мира: напротив, я ненавидел зубрежку. Не таким способом я надеялся получить возможность узнать все, что только было известно. Даже если бы мне сказали, что ежедневно появляется столько публикаций, сколько человек не сможет прочитать и за целую жизнь, или что науке известно 600 000 видов жуков, это не разочаровало бы меня. Я не горел желанием проследить за полетом каждого воробья. Более того, я никогда не считал, что древний ученый, который, как предполагалось, знал все, что было известно, стал бы занимать себя чем-то подобным. Я иначе представлял себе то, что может считаться известным. Под «известным» я подразумевал понятое.

Сама мысль о том, что один человек в состоянии понять все, что понято, может показаться фантастической, однако фантастики в ней куда меньше, чем в мысли о том, что один человек сможет запомнить все известные факты. К примеру, никто не сможет запомнить все известные результаты научных наблюдений даже в такой узкой области, как движения планет, но многие астрономы понимают эти движения настолько полно, насколько их можно понять. Это становится возможным, потому что понимание зависит не от знания множества фактов как таковых, а от наличия правильных концепций, объяснений и теорий. Одна сравнительно простая и понятная теория может охватить бесконечно много неудобоваримых фактов. Лучшей теорией планетарного движения является общая теория относительности Эйнштейна, которая в самом начале XX века вытеснила теории гравитации и движения Ньютона. Теория Эйнштейна в принципе предсказывает не только все движения планет, но и все остальные эффекты гравитации, и согласуется с нашими самыми точными измерениями. Дело в том, что, когда теория предсказывает что-либо «в принципе», это означает, что предсказание логически следует из теории, даже если на практике для получения некоторых таких предсказаний необходимо произвести больше вычислений, чем мы способны осуществить технически или физически в той вселенной, которую мы знаем.

Способность предсказывать или описывать что-либо, даже достаточно точно, совсем не равноценна пониманию этого. В физике предсказания и описания часто выражаются в виде математических формул. Допустим, я запомнил формулу, из которой при наличии времени и желания мог бы вычислить любое положение планет, которое когда-либо было записано в архивах астрономов. Что же я в этом случае выиграл бы по сравнению с непосредственным заучиванием архивов? Формулу проще запомнить, но ведь найти число в архивах может быть даже проще, чем вычислить его из формулы. Истинное преимущество формулы в том, что ее можно использовать в бесконечном множестве случаев помимо архивных данных, например, для предсказания результатов будущих наблюдений. С помощью формулы можно также получить более точное историческое положение планет, потому что архивные данные содержат ошибки наблюдений. И все же несмотря на то, что формула охватывает бесконечно больше фактов, чем архив наблюдений, знать ее не значит понимать движения планет. Факты невозможно понять, попросту собрав их в формулу, так же как нельзя понять их, просто записав или запомнив. Факты можно понять только после объяснения. К счастью, наши лучшие теории наряду с точными предсказаниями содержат глубокие объяснения. Например, общая теория относительности объясняет гравитацию на основе новой четырехмерной геометрии искривленных пространства и времени. Она точно объясняет, каким образом эта геометрия воздействует на материю и подвергается воздействию материи. В этом объяснении и заключается полное содержание теории; а предсказания движений планет – это всего лишь некоторые следствия, выводимые из этого объяснения.

Общая теория относительности так важна не потому, что она может чуть более точно предсказать движение планет, чем теория Ньютона, а потому, что она открывает и объясняет такие аспекты действительности, о которых ранее не подозревали – например, искривление пространства и времени. Это типично для научного объяснения. Научные теории объясняют объекты и явления в нашей жизни, опираясь на лежащую в их основе фундаментальную реальность, которую мы не воспринимаем непосредственно. Но способность теории объяснить то, что мы ощущаем, – не самое ценное ее качество. Самое ценное заключается в том, что она объясняет саму структуру реальности. Как мы увидим, одно из самых ценных, значимых и полезных качеств человеческой мысли – ее способность открывать и объяснять структуру реальности.

Однако некоторые философы, и даже ученые, недооценивают роль объяснения в науке. Для них основная цель научной теории заключается не в объяснении чего-либо, а в предсказании результатов экспериментов: все содержание теории заключено в формуле предсказания. Они считают, что годится любое непротиворечивое объяснение, которое теория может дать своим предсказаниям, равно как и отсутствие объяснения, – до тех пор, пока ее предсказания верны. Такой взгляд называется инструментализмом (поскольку в этом случае теория – всего лишь «инструмент» для предсказаний). Саму мысль о том, что наука может позволить нам понять скрытую реальность, лежащую в основе наших наблюдений, инструменталисты считают ложной и тщеславной. Они не понимают, каким образом то, о чем говорит научная теория помимо предсказания результатов экспериментов, может быть чем-то бо́льшим, чем пустые слова. В частности, объяснения они считают вспомогательными психологическими приспособлениями – чем-то вроде художественных элементов, включаемых в теории, чтобы сделать их занимательнее и облегчить запоминание. Лауреат Нобелевской премии, физик Стивен Вайнберг1, явно говорил с позиций инструментализма, сделав следующий невероятный комментарий к объяснению гравитации Эйнштейном:

«Важно иметь возможность сделать предсказания относительно изображений на фотопластинках астрономов, частот спектральных линий и т. п., а то, припишем ли мы эти прогнозы физическому воздействию гравитационных полей на движение планет и фотонов [как это было в физике до Эйнштейна] или искривлению пространства и времени, просто не имеет значения» (Gravitation and Cosmology, p. 147).

Вайнберг и другие инструменталисты ошибаются. То, что мы приписываем изображениям на астрономических фотопластинках, имеет значение, и не только для физиков-теоретиков вроде меня, у которых мотивацией для написания формул и изучения теорий как раз и является лучше понять мир. (Я уверен, что эта мотивация присуща и Вайнбергу: вряд ли его стимулирует одно лишь желание предсказывать изображения и спектры!) Дело в том, что даже для чисто практического применения прежде всего важна объяснительная сила теории, а уж потом, в качестве дополнения, – ее предсказательные возможности. Если это вас удивляет, представьте, что на земле появился инопланетный ученый и преподнес нам ультравысокотехнологичный «оракул», который может предсказать результат любого эксперимента, но без каких-либо объяснений. Если верить инструменталистам, то как только мы получим этот оракул, или предсказатель, наши научные теории нам будут нужны разве что для развлечения. Но так ли это? Каким образом оракул можно было бы использовать практически? В некотором смысле он содержал бы знания, необходимые для того, чтобы построить, скажем, межзвездный корабль. Но как именно он бы пригодился нам при строительстве такого корабля, или при создании другого подобного предсказателя, или даже при усовершенствовании мышеловки? Оракул всего лишь предсказывает результаты экспериментов. Следовательно, чтобы вообще использовать его, нам сначала нужно знать, о каких экспериментах его можно спрашивать. Если бы мы дали предсказателю проект космического корабля и информацию о предполагаемом испытательном полете, он мог бы сказать нам, как поведет себя корабль во время этого полета. Но спроектировать космический корабль предсказатель не смог бы. И даже если бы он сообщил нам, что спроектированный нами космический корабль взорвется при запуске, он не смог бы сказать нам, как предотвратить этот взрыв. Эту проблему снова пришлось бы решать нам. А прежде чем ее решить, прежде чем приступить хоть к какому-то усовершенствованию конструкции, нам пришлось бы понять, кроме всего прочего, принцип работы космического корабля. И только тогда у нас появилась бы возможность узнать, почему он может взорваться при запуске. Предсказание – пусть даже самое совершенное, универсальное предсказание – не способно заменить объяснение.

Сходным образом и в научных исследованиях оракул не может дать нам ни одной новой теории. Только в том случае, если у нас уже есть теория и мы придумали эксперимент для ее проверки, можно было бы спросить его, что произойдет, если подвергнуть эту теорию данному испытанию. Таким образом, предсказатель заменил бы вовсе не теории – он заменил бы эксперименты. Он избавил бы нас от затрат на испытательные лаборатории и ускорители частиц. Вместо того чтобы строить опытные образцы космических кораблей и рисковать жизнью летчиков-испытателей, все испытания мы могли бы проводить на земле, посадив летчиков в пилотажные тренажеры, поведение которых определялось бы предсказаниями оракула.

Предсказатель мог бы быть весьма полезен во многих ситуациях, но его полезность всегда будет зависеть от способности людей решать научные проблемы точно так же, как они вынуждены делать это сейчас, а именно – изобретая объяснительные теории. Он даже не может заменить все эксперименты, поскольку на практике его способность предсказать результат какого-то частного эксперимента зависит от того, что проще: достаточно точно описать этот эксперимент, чтобы оракул дал полезный ответ, или провести эксперимент в действительности. Таким образом, для связи с предсказателем нужен своего рода «пользовательский интерфейс». Возможно, описание эксперимента придется вводить на каком-то стандартном языке, причем одни эксперименты было бы труднее описать, чем другие. На практике описание многих экспериментов оказалось бы слишком сложным для ввода. Таким образом, предсказатель имел бы те же основные достоинства и недостатки, что и любой другой источник экспериментальных данных, и был бы полезен только в тех случаях, когда обращение к нему оказывалось бы удобнее, чем к другим источникам.

Можно посмотреть на ситуацию и другим способом: такой оракул уже существует рядом с нами, и это – физический мир. Он сообщает нам результат любого возможного эксперимента, если мы спрашиваем его на правильном языке (т. е. если мы проводим эксперимент), хотя в некоторых случаях нам не очень удобно «вводить описание эксперимента» в требуемой форме (т. е. создавать некий прибор и управлять им). И он тоже не дает никаких объяснений.

В немногих практических случаях, например, при прогнозе погоды, оракул, обладающий исключительно предсказательной функцией, устроил бы нас почти в той же степени, как и объяснительная теория. Но даже в этом случае это справедливо лишь при условии, что сделанный оракулом прогноз погоды является полным и совершенным. На практике прогнозы погоды неполны и несовершенны, и, чтобы скомпенсировать неточность, в них включают объяснения того, как метеорологи получили тот или иной прогноз. Объяснения позволяют нам судить о надежности прогноза и вывести дальнейшие предсказания с учетом нашего месторасположения и наших нужд. К примеру, для меня есть разница, чем будет вызвана ветреная погода, которую прогнозируют на завтра: ожидаемой близостью района с высоким атмосферным давлением или более отдаленным ураганом. В последнем случае я был бы более осторожным. Метеорологам самим необходимы объяснительные теории о погоде, чтобы они могли угадать, какие приближения можно допустить при компьютерном моделировании погоды, какие дополнительные наблюдения обеспечат более точный и своевременный прогноз погоды и т. п.

Таким образом, идеал инструменталистов, олицетворяемый нашим воображаемым оракулом, а именно – научная теория, лишенная своего объяснительного содержания, будет иметь очень ограниченную полезность. Так будем благодарны, что реальные научные теории не похожи на этот идеал и что ученые в действительности к нему не стремятся.

Крайняя форма инструментализма, называемая позитивизмом (или логическим позитивизмом), утверждает, что все положения, отличные от тех, которые описывают или предсказывают наблюдения, не только излишни, но и бессмысленны. И хотя в соответствии с этим критерием в самой доктрине отсутствует смысл, она тем не менее господствовала в науке всю первую половину XX столетия! Идеи инструменталистов и позитивистов широко распространены даже сегодня. Причина такой их внешней убедительности заключается в том, что, хотя предсказание не является целью науки, оно является характерной чертой научного метода. Этот научный метод включает выдвижение новой теории для объяснения некоторого класса явлений, затем проведение решающей экспериментальной проверки – такого эксперимента, для которого старая теория предсказывает один видимый результат, а новая теория – другой. Затем теория, предсказания которой оказались ложными, отвергается. Таким образом, результат решающего эксперимента, который позволяет сделать выбор между двумя теориями, зависит от предсказаний теорий, а не напрямую от их объяснений. Именно отсюда истекает ошибочное представление, что в научной теории нет ничего, кроме предсказаний. Однако экспериментальная проверка – это далеко не единственный процесс, обеспечивающий рост научного знания. Подавляющее большинство теорий отвергли не потому, что они не прошли проверку экспериментом, а потому, что они давали плохие объяснения. Мы отвергаем такие теории, даже не проверяя их. Например, рассмотрим следующую теорию: съев килограмм травы, можно вылечиться от простуды. Эта теория делает предсказание, которое можно проверить на опыте: если люди попробуют лечиться травой и найдут это неэффективным, будет доказана ее ложность. Но эту теорию никогда не проверяли экспериментально и, возможно, никогда не будут проверять, потому что она не дает объяснений: она не объясняет ни механизм лечения, ни что бы то ни было еще. Поэтому мы справедливо полагаем, что она ложная. Всегда есть бесконечно много возможных теорий такого рода, совместимых с существующими наблюдениями и предлагающих новые предсказания, и у нас не хватило бы ни времени, ни средств, чтобы проверить их все. Мы проверяем те новые теории, которые выглядят более обещающими для объяснения вещей, чем доминирующие сегодня.

Утверждать, что предсказание – цель научной теории, значит путать средства и цели. Точно так же можно сказать, что цель космического корабля – сжигать топливо. На самом деле горение топлива – это лишь один из многих процессов, которые корабль должен выполнить для достижения своей действительной цели, то есть для транспортировки полезного груза из одной точки космического пространства в другую. Успешная экспериментальная проверка – это лишь один из многих шагов, которые теория должна пройти для достижения истинной цели науки, состоящей в объяснении мира.

Как я уже сказал, объяснения неизбежно включают то, чего мы не наблюдаем непосредственно: атомы и силы; внутреннее строение звезд и вращение галактик; прошлое и будущее; законы природы. Чем глубже объяснение, тем к более отдаленным от непосредственного опыта сущностям оно должно обращаться. Однако эти сущности не являются вымышленными: напротив, они часть самой структуры реальности.

Объяснения часто порождают предсказания, по крайней мере, в принципе. В самом деле, если что-то вообще можно предсказать, то достаточно полное объяснение должно обеспечивать столь же полное предсказание (помимо всего прочего). Однако можно объяснить и понять многие очевидным образом непредсказуемые вещи. Например, вы не можете предсказать, какие номера выдаст хорошая, симметричная рулетка. Но если вы понимаете, что именно в конструкции и действии рулетки делает ее беспристрастной, то вы сможете объяснить, почему невозможно предсказать номера. И опять: знание о том, что рулетка является честной, не равноценно пониманию того, что делает ее таковой.

И я говорю именно о понимании, а не просто о знании (или описании, или предсказании). Поскольку понимание приходит через объяснительные теории, и благодаря высокой общности таких теорий, быстрый рост числа зафиксированных фактов не обязательно усложняет понимание всего, что понято. Тем не менее большинство людей считает (и именно так мне говорили в детстве), что с ошеломляющей скоростью растет не только количество записанных фактов, но также количество и сложность теорий, через которые мы познаем мир. Следовательно, говорят они, не важно, было или нет такое время, когда один человек мог понять все, что было понято, в наше время это точно невозможно, и это становится все более и более невозможным по мере роста нашего знания. Может показаться, что каждый раз, когда появляется новое объяснение или методика, существенная для данного предмета, приходится добавлять еще одну теорию к списку, который должен выучить любой, кто желает понять предмет. Когда же количество таких теорий в любом предмете становится слишком большим, появляются специализации. Физика, к примеру, разделилась на астрофизику, термодинамику, физику элементарных частиц, квантовую теорию поля и многие другие части. Теоретическая основа каждой из них по крайней мере столь же обширна, как вся физика была сто лет назад, и многие уже распадаются на подспециализации. Кажется, что, чем больше открытий мы делаем, тем дальше и тем более безвозвратно нас уносит в век узких специалистов, и тем более далекими становятся те гипотетические древние времена, когда понимание обычного человека могло охватить все, что только было понято.

Человека, столкнувшегося с этим огромным и быстро растущим списком теорий, созданных человеческой расой, можно простить за его сомнения в том, что один индивидуум способен за свою жизнь отведать каждое блюдо и самостоятельно, как это могло быть когда-то, оценить все известные рецепты. Однако объяснение – необычная пища: большую порцию не обязательно труднее проглотить. Теорию может вытеснить новая теория, более точная, с бо́льшим количеством объяснений, но и более простая для понимания. В этом случае старая теория становится лишней, и мы понимаем больше, а учим меньше. Именно это и произошло, когда теория Николая Коперника о том, что Земля движется вокруг Солнца, вытеснила сложную систему Птолемея, которая помещала Землю в центр вселенной. Иногда новая теория может упрощать существующую, как в случае, когда арабские (десятичные) цифры заменили римские. (В данном случае теория выражена неявно. Каждая система записи делает определенные операции, высказывания и мысли о числах проще, чем другие системы, и, следовательно, воплощает некую теорию о том, какие отношения между числами являются полезными или интересными.) Новая теория может также объединять две старые теории, давая нам больше понимания, чем при их использовании по отдельности, как это произошло, когда Майкл Фарадей и Джеймс Клерк Максвелл объединили теории электричества и магнетизма в одну теорию электромагнетизма. Более удачные объяснения любого предмета обычно косвенным образом ведут к совершенствованию методологии, концепций и языка, с помощью которых мы пытаемся понять другие предметы, а следовательно, по мере возрастания нашего знания в целом его структура может становиться более доступной для понимания.

Часто бывает так, что даже после того, как старые теории включаются в новые, они не забываются полностью. Даже римские цифры все еще используются сегодня в определенных случаях. Те громоздкие методы, с помощью которых люди когда-то вычисляли, что XIX, умноженное на XVII, равно CCCXXIII, уже не применяются всерьез, но даже сейчас они несомненно известны и понятны кому-то, например, историкам математики. Означает ли это, что человек не может понять «все, что понято», не зная римских цифр и их загадочной арифметики? Совсем нет. Современный математик, который по какой-то причине никогда не слышал о римских цифрах, тем не менее уже обладает полным пониманием связанной с ними математики. Узнав о римских цифрах, этот математик приобретет не новое понимание, а всего лишь новые факты – исторические факты, факты о свойствах некоторых произвольно определенных символов, но не новое знание о самих числах. Он уподобится зоологу, который учится переводить названия видов на иностранный язык, или астрофизику, который узнает, каким образом люди различных культур группируют звезды в созвездия.

Необходимо ли знание арифметики римских цифр для понимания истории – отдельный вопрос. Можно допустить, что какая-то историческая теория – какое-то объяснение – зависит от определенных методов, которые древние римляне использовали для умножения. Ведь есть же предположение о том, например, что их особые методы строительства водопроводов из свинцовых труб, отравлявших питьевую воду, внесли свой вклад в падение Римской империи! Если так, то нам следует узнать, какие это были методы, если мы хотим понять историю, а следовательно, и понять все, что понято. Но ни одно современное объяснение истории не связано с методикой умножения чисел, так что наши сведения относительно этих методов – не более чем констатация фактов. Все, что понятно, может быть понято и без заучивания этих фактов. Мы в любое время можем посмотреть в справочник, если, например, расшифровываем древний текст, в котором эти методы упоминаются.

Постоянно разграничивая понимание и «просто» знание, я не хочу преуменьшить важность зафиксированной, но не объясняющей информации. Такая информация безусловно важна для всего: от воспроизводства микроорганизма (который содержит такую информацию в молекулах ДНК) до самого абстрактного человеческого мышления. Чем же тогда отличается понимание от простого знания? Что есть объяснение, если противопоставить его констатации факта, такой как точное описание или предсказание? На практике мы обычно легко видим разницу. Мы знаем, когда чего-то не понимаем, даже если мы можем точно описать и предсказать это (например, течение известной болезни неизвестного происхождения), и также мы знаем, когда объяснение улучшает наше понимание. Но дать точное определение понятий «объяснение» или «понимание» сложно. Грубо говоря, они скорее отвечают на вопрос «почему», чем на вопрос «что»; затрагивают внутреннюю суть вещей; описывают их реальное, а не кажущееся состояние; говорят о том, что должно быть, а не просто что случается; определяют законы природы, а не эмпирические правила. Эти понятия также связаны с согласованностью, красотой и простотой в противоположность произвольному и сложному, хотя ни одному из этих понятий тоже нельзя дать простого определения. Но в любом случае понимание – это одна из высших функций человеческого мозга и разума, и эта функция уникальна. Многие другие физические системы, например, мозг животных, компьютеры и другие машины, способны усваивать факты и действовать в соответствии с ними. Но в настоящее время мы не знаем ничего, кроме человеческого разума, что было бы способно понять объяснение и, главное, желало бы его получить. Каждое открытие нового объяснения и каждый акт понимания существующего объяснения зависит от уникальной человеческой способности мыслить творчески.

То, что произошло с римскими цифрами, можно рассматривать как процесс «разжалования» объяснительной теории до простого описания фактов. Подобное снижение статуса теорий происходит постоянно по мере роста нашего знания. Изначально римская система цифр действительно формировала часть концептуальной и теоретической системы взглядов, посредством которой люди, использовавшие их, понимали мир. Но сейчас то понимание, которое когда-то достигалось таким образом, – не более чем крошечный аспект гораздо более глубокого понимания, воплощенного в современных математических теориях и неявно – в современной записи чисел.

Это иллюстрирует еще одно свойство понимания. Можно понимать что-то, не осознавая, что понимаешь, и даже не будучи знакомым с предметом. Возможно, это звучит парадоксально, но весь смысл глубоких, общих объяснений состоит в том, что они охватывают не только знакомые ситуации, но и незнакомые. Если бы вы были современным математиком и впервые столкнулись с римскими цифрами, возможно, вы бы сразу не осознали, что уже понимаете их. Сначала вам бы пришлось узнать определенные факты о том, что это такое, а потом поразмышлять над этими фактами в свете имеющегося у вас понимания математики. Но сделав это, вы могли бы, оглядываясь, сказать: «Да, в римской системе цифр для меня нет ничего нового, кроме фактов». Именно это мы имеем в виду, когда говорим, что объяснительная роль римских цифр полностью устарела.

Точно так же, когда я говорю, что понимаю, каким образом кривизна пространства и времени влияет на движение планет, в том числе и в других солнечных системах, о которых я, возможно, никогда и не слышал, я не утверждаю, что могу вспомнить без дальнейших размышлений объяснение всех особенностей формы и возмущений орбиты любой планеты. Я имею в виду, что понимаю теорию, содержащую все эти объяснения, и поэтому могу вывести любое из них, если получу некоторые факты о конкретной планете. Сделав это, я могу, оглянувшись в прошлое, сказать: «Да, за исключением фактов, я не вижу в движении этой планеты ничего, что не объясняла бы общая теория относительности». Мы понимаем структуру реальности, только понимая объясняющие ее теории. А поскольку они объясняют больше, чем непосредственно осознаем, мы можем понимать больше того, в чем непосредственно отдаем себе отчет.

Я не утверждаю, что если мы понимаем теорию, то мы обязательно понимаем и все, что она может объяснить. В очень глубокой теории осознание того, что она объясняет данное явление, само по себе может быть значительным открытием, требующим независимого объяснения. Например, квазары – чрезвычайно яркие источники излучения в центре некоторых галактик – в течение многих лет были одной из загадок астрофизики. Некоторое время полагали даже, что для их объяснения потребуется новая физика, но сейчас мы считаем, что их объясняет общая теория относительности и другие теории, которые были известны еще до открытия квазаров. Мы полагаем, что квазары состоят из горячего вещества, находящегося в процессе падения в черную дыры (сколлапсировавшие звезды, со столь сильным гравитационным полем, что из него невозможно вырваться2). Однако потребовались многие годы наблюдений и теоретических исследований, прежде чем мы пришли к этому выводу.

1.Cтивен Вайнберг (род. 1933) – американский физик и популяризатор науки. Один из авторов теории электрослабого взаимодействия, за которую в 1979 г. вместе с Шелдоном Глэшоу и Абдусом Саламом был удостоен Нобелевской премии. – Прим. ред.
2.Черные дыры в квазарах в миллионы раз массивнее звезд. Они возникли либо в результате длительной аккумуляции массы сколлапсировавшими звездами, либо непосредственно за счет коллапса огромных газовых облаков. – Прим. ред.
Vanusepiirang:
12+
Ilmumiskuupäev Litres'is:
15 detsember 2014
Tõlkimise kuupäev:
2015
Kirjutamise kuupäev:
1997
Objętość:
550 lk 34 illustratsiooni
ISBN:
978-5-9614-3713-3
Tõlkija:
Литагент «Альпина»
Allalaadimise formaat:

Selle raamatuga loetakse