Lugege ainult LitRes'is

Raamatut ei saa failina alla laadida, kuid seda saab lugeda meie rakenduses või veebis.

Rank-Based Methods for Shrinkage and Selection
Teksttekst

Maht 1203 leheküljed

0+

Rank-Based Methods for Shrinkage and Selection

With Application to Machine Learning
Lugege ainult LitRes'is

Raamatut ei saa failina alla laadida, kuid seda saab lugeda meie rakenduses või veebis.

133,44 €

Autorid

Raamatust

Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: Development of rank theory and application of shrinkage and selection Methodology for robust data science using penalized rank estimators Theory and methods of penalized rank dispersion for ridge, LASSO and Enet Topics include Liu regression, high-dimension, and AR(p) Novel rank-based logistic regression and neural networks Problem sets include R code to demonstrate its use in machine learning

Žanrid ja sildid

Jätke arvustus

Logi sisse, et hinnata raamatut ja jätta arvustus
Mohammad Arashi, Resve A. Saleh jt «Rank-Based Methods for Shrinkage and Selection» — loe veebis. Jäta kommentaare ja arvustusi, hääleta lemmikute poolt.
Vanusepiirang:
0+
Objętość:
1203 lk 1356 illustratsiooni
ISBN:
9781119625421
Kustija:
Õiguste omanik:
John Wiley & Sons Limited