Структура мироздания Вселенной. Часть 3. Гипермир

Tekst
Loe katkendit
Märgi loetuks
Kuidas lugeda raamatut pärast ostmist
Šrift:Väiksem АаSuurem Aa

Специально созданный для обнаружения слабого инфракрасного излучения космический телескоп «Джеймс Уэбб» должен был позволить заглянуть астрономам в раннюю Вселенную, о которой нам ничего доподлинно неизвестно. Первые результаты наблюдений удивили и обескуражили: – «Вместо космической пустоты в ранней Вселенной обнаружились звёзды и даже галактики, которых в теории там не должно было быть».

Свежие снимки (фото 4.3) «Уэбба» вновь подтверждают этот факт.

Фото 4.3. 27.10.2022 [11:09]. Г. Детинич. Объект MACS0647-JD, до которого 13,3 млрд световых лет, оказался сложен из двух объектов – двух звёздных скоплений.


18.11.2022 [10:26], Г. Детинич. Самым ценным наблюдением стало обнаружение кандидата в ранние галактики под именем Maisies, «Мэйси». Красное смещение этого объекта – (z14,3). Галактика «Мэйси» могла существовать всего через 286 млн. лет после Большого взрыва. В это время там должны быть только пыль и газ, не говоря о звёздах и, тем более, галактиках.

Главный вывод. Наблюдения высокой плотности и яркости галактик в ранней Вселенной (фото 4.3) с телескопа Джеймс Уэбб начиная с 21 августа 2022 года на фоне противоречий рождения Больших стен (Слоуна, Геркулес и других), а также Большой аналитической статьи доктора К. Болдинга, Председателя Американской ассоциации развития науки7, ставят Большой Крест на всех математических теориях Большого взрыва.

Глава 5. Солнечная система, Гипервихроны звёзд и планет

Самые реальные представления о структуре Вселенной в умах достаточно образованных, имеющих широкий кругозор8, здоровых и честных учёных формируются из наблюдений и анализа свойств явлений, происходящих на Солнце и планетах, вращающихся вокруг него. Итак, Солнечная система и взгляд из неё на окружающее Пространство Человеком.

Теории САП зашли в тупик в исследованиях Управляемого Термоядерного Синтеза, микроматерии9 (атома, атомного ядра, элементарных частиц), асимметрии вещества 4,9% и антивещества 95,1%, а также в изучении квантовых свойств макроматерии конденсированного вещества (Эффект Джанибекова, Эффект Д. Серла, электрический ток, звук, сверхтекучесть и сверхпроводимость и т.д.), явлений LENR и структур гиперматерии – ядер и атмосферы звёзд, планет, их мантийного вещества и гранита, ядра Земли, его гравитационного, магнитного и электрического полей, тайн образования тёмной массы, звёздного и планетного вещества и т. д. Неверно трактуется причина образования звёзд и планет – из вращающегося газопылевого облака. Как верно отмечено: – «Из пыли звёзды не рождаются».

Это следствие того, что в современной физике стало преобладать10 мнение о несущественности наглядности в исследованиях структур элементарных частиц и механизма природы их внутренних и внешних полей на фоне виртуальных достижений феноменологических теорий на основе математических представлений квантовой механики, квантовой теории поля, квантовой хромодинамики и математических теорий относительности. Математический формализм в приоритетах методов познания законов природы ограничен теоремами о неполноте К. Гёделя, по мнению которого в логическом отношении математика оказалась неполна. В таких теориях отсутствует связь описываемых ими природных квантовых явлений с наглядным представлением хотя бы приближённого механизма микроскопических взаимодействий, а в теориях относительности реально наблюдаемые в природе движение и изменения материи подменяется несуществующей в природе формой материи – временем. К. Гёдель также считал, что «время» – это иллюзорная категория, которая отсутствует в природе. Кроме того, вихревой механизм переноса11 электромагнитной материи со скоростью света без обоснования распространяется на радиальный прямолинейный и относительный перенос масс и материи полей стационарных источников гравитации, электричества и магнетизма.

Основные явления природы мироздания такие как:

– внешние и внутренние поля звёзд и планет,

– механизм гравитации и знак заряда центрального поля тяготения ядер звёзд и планет,

– эллипсоидная форма движения орбит планет и их постоянство,

– механизм магнитного поля и инверсия его полюсов в местах обычного размещения на планетах и звёздах,

– чёрные и белые пятна на поверхности фотосферы Солнца,

– факельные выбросы черными сферами (протуберанцы) плазмы из флоккул в хромосферу,

– чёрные сферы, являющиеся причиной факельных выбросов плазмы фотосферы, растворяющиеся в прозрачность на поверхности Солнца,

– расширение объёма Земли,

– активная вулканическая деятельность,

– землетрясения и цунами,

– циклоны и антициклоны,

– линейные, шаровые молнии, спрайты, эльфы, синие струи и т.д.,

– базальты, граниты, уран в граните, нефть, газ, минералы и полезные ископаемые,

– сферы из Клерксдорпа, котлы Вилюя и шаровые конкреции на поверхности Земли,

– огненные шары, вылетающие с поверхности Земли, в частности из реки Меконг,

– аномальные гравитационные выбросы,

– неравномерное распределение и аномалии гравитационного поля Земли,

– выброс с поверхности Земли антигравитационных монополей и гравиболидов,

– синие дыры и цилиндрические провалы всасывания породы на поверхности Земли и т. д.,

– структура галактик, имеющая вид двухрукавной спирали.

– механизм рождения ЧСТ,

– механизм рождения вещества во Вселенной.


Всё это предмет рассмотрения в данном разделе.


Солнечная система, как индикатор дальнодействия гравитационного поля ядра Солнца

Солнце образует солнечную систему планет в галактике Млечный путь – это 9 крупных планет, из которых некоторые имеют еще и свои спутники, а также пояс астероидов. Солнечную систему лучше назвать планетарная система Солнца, в этой системе отсутствуют «голые» нейтронные звёзды и квазары – они имеют тот же знак заряда ЧСТ, что и ядро Солнце. Существует еще и внутри планетарные системы: Юпитера (80 спутников, из которых 4 планеты), Сатурна (118 спутников, из которых 8 планеты), Уран имеет 27, а Нептун – 13. Из всех астрофизических объектов наиболее глубоко, но недостаточно, изучены Земля, Луна и Солнце. В меньшей степени – Юпитер, Ио и Европа, а также Сатурн, Энцелад и Титан. Другие планеты и их спутники системы Солнца изучены с ещё меньшей глубиной. Планеты движутся по эллиптическим орбитам. На вопрос – почему не по круговым? Ответа нет. Нет ответа и на вопрос – почему планеты земной группы находятся на ближних к Солнцу орбитах, чем газожидкие. В поясе астероидов в непосредственной близости изучен астероид Веста и его поле гравитации (ускорение свободного падения на поверхности равно 0,22 м/с2) от одного полюса до другого, а также Эрос (0,0059 м/с2) и поля гравитации других астероидов – они отличны от полей гравитации Земли и других планет – почему12? В солнечной системе имеются почти все астрофизические объекты, обнаруженные в дальнем космосе, от уже распавшихся планет до звезды средней величины, кроме квазаров, нейтронных звёзд13 и близких к ним коричневых карликов – почему? Солнечная система вращается вокруг центра галактики Млечный Путь по почти круговой орбите со скоростью около 220 км/c. А сама Галактика14 движется со скоростью 20 км/с по направлению к созвездиям Лиры и Геркулеса, ускоряясь по мере расширения Вселенной. Земля, в таких движениях, описывает в пространстве винтовую линию.

 

Основное отличие этих астрофизических объектов от покоящихся объектов, размещённых на планетах и звёздах заключается в том, что они обладают более значительной массой (энергией), имеющей существенное вращение вокруг какой-либо постоянной оси. В связи с тем, что все вращающиеся тела индуктируют вокруг оси вращения связанные жестко с центром системы масс вихроны, то этот процесс становится для названных объектов превалирующим для генерации дополнительной энергии в форме механических и электромагнитных гипервихронов.

Установлено, что Земля двигается по орбите вокруг Солнца отнюдь не с равномерной скоростью, а делает небольшие притормаживания и рывки вперёд по направлению своего движения, которые синхронизированы с соответствующим положением Луны. Однако, никаких движений в стороны, перпендикулярные к направлению своей орбиты, Земля не делает, несмотря на то, что Луна может находиться с любой стороны от Земли в плоскости своей орбиты – почему? Современная цивилизация посылает аппараты для изучения ближнего и дальнего космоса, а на своей планете до сих пор остаются «белые пятна» в исследованиях основных вопросов структуры центра ядра планеты, природы тяготения, расширения или сжатия планеты, тайны гранитизации первичных базальтов, причины излияний лавы вулканов на поверхность, непрекращающиеся разломы внешней поверхности Земли, приводящие к её общему увеличению в объёме и т. д.

Даже при исследованиях дальнего космоса накопилось много противоречивых данных, которые повторяются с завидным постоянством, начиная от первых проб попадания в Луну или отправки зондов к спутникам Марса, заканчивая последними попытками выйти на орбиты вокруг астероидов или комет, сила притяжения у которых незначительна или полностью отсутствует даже на их поверхности. А как же закон всемирного тяготения Ньютона15? Астероидов только в одноимённом поясе зарегистрировано великое множество, а вот спутников ни один из них не имеет. Предпринятые попытки вывести на орбиту астероидов искусственные спутники окончились крахом. Первая попытка – зонд NEAR – подгоняли к астероиду Эрос американцы. Не удалась. Вторая попытка – зонд ХАЯБУСА («Сокол»), японцы отправили к астероиду Итокава, и тоже ничего не вышло.

Почти у всех спутников осевое вращение синхронно с орбитальным. Астрономические сайты констатируют, что синхронно вращаются вокруг своих планет (постоянно обращены к ним одной стороной) спутники Земли, Марса, Сатурна (кроме Гипериона, Фебы и Имира), Урана, Нептуна (кроме Нереиды) и Плутона. В системе Юпитера такое вращение характерно для значительной части спутников, в том числе всех галилеевых.

Все видимые звёзды и активные планеты следует рассматривать, как двойные заряды-источники с противоположными знаками гравитационных полей, структура которых состоит из центрального ядра ЧСТ с одним знаком заряда, окружённого со всех сторон, как вокруг центра атомно-молекулярным веществом в звёздах или мантией-корой с переходом вещества также в атомно-молекулярное вещество на планетах с противоположным знаком заряда. При этом атомно-молекулярное вещество вокруг центра является продуктом распада ядра ЧСТ.


Солнечная система – обследования АМС.

Идея исследований автоматическими станциями (АМС) планет Солнечной системы появилась впервые в середине 1960-х, когда студент-интерн Гэри Флендро рассчитал возможность достижения внешних планет с использованием гравитационного манёвра около Юпитера. В 1966 году он опубликовал работу, в которой обратил внимание, что в конце 1970-х годов представляется удачная возможность для облёта сразу четырёх внешних планет Солнечной системы (Юпитера, Сатурна, Урана и Нептуна) одним космическим аппаратом, благодаря их редкому сближению на орбитах. Все планеты-гиганты удачно расположились в сравнительно узком секторе Солнечной системы (парад планет) и стало возможным использование гравитационных манёвров для облёта всех внешних планет, за исключением Плутона. Поэтому траектория (фото 5.1) полётов была рассчитана исходя из этой возможности.


Фото 5.1. Схема движения аппаратов Пионер-10,11 и Вояджер-1,2.


«Пионе́р-10» – автоматическая межпланетная станция (АМС) НАСА, предназначенная для изучения Юпитера и гелиосферы. «Пионер-10» стал первым космическим аппаратом, совершившим пролёт вблизи Юпитера и сфотографировавшим планету, а также первым аппаратом, развившим достаточную скорость для преодоления силы притяжения Солнца. Оператором миссии являлся исследовательский центр Эймса в Калифорнии.

В рабочем состоянии «Пионер-10» имел высоту 2,9 м. Его основная параболическая антенна имела диаметр 2,75 м. Направление антенны на Землю поддерживалось вращением аппарата вокруг продольной оси. Сведения о массе «Пионера-10» не совсем точные. Полная стартовая масса аппарата составляла 259 кг, включая 36 кг гидразинового топлива. «Пионер-10» нёс приборы общей массой около 33 кг, предназначенные решения различных научных задач и сгруппированные в 11 отдельных «инструментов».


Фото 5.2. Схема аппарата АМС Пионер-10.


АМС «Пионер-10» (фото 5.2) запущен 3 марта 1972 года носителем Атлас-Центавр. В феврале 1973 года «Пионер-10» впервые пересёк пояс астероидов, ближе всего (на 8,8 млн км) подойдя к астероиду Ника и обнаружив пылевой пояс ближе к Юпитеру. Аппарат пролетел на расстоянии 132 тыс. км от облаков Юпитера 4 декабря 1973 года. Были получены данные о составе атмосферы Юпитера, уточнена масса планеты, измерено её магнитное поле, а также установлено, что общий тепловой поток от Юпитера в 2,5 раза превышает энергию, получаемую планетой от Солнца. «Пионер-10» также позволил уточнить плотность четырёх Галилеевых спутников Юпитера. Последний контакт с «Пионером-10» состоялся 22—23 января 2003 года. В это время космический аппарат находился на расстоянии 82,19 а.е. от Солнца и удалялся от него с относительной скоростью 12,224 км/c. Дальнейшая судьба «Пионера-10» неизвестна.

В феврале 1976 года аппарат пересёк орбиту Сатурна, а 11 июля 1979 года – орбиту Урана. 13 июня 1983 года «Пионер-10» стал первым космическим аппаратом, пересекшим орбиту самой далёкой на тот момент планеты – Нептуна. Официально миссия16 «Пионера-10» закончилась 31 марта 1997 года, на расстоянии около 67 а. е. от Солнца, хотя аппарат продолжал передавать данные.

17 февраля 1998 года, на расстоянии 69,419 а. е. (около 10,4 млрд км) от Солнца «Пионер-10» перестал быть самым удалённым рукотворным объектом, так как его «обогнал» космический аппарат «Вояджер-1».

Последний успешный приём данных телеметрии от «Пионера-10» состоялся 27 апреля 2002 года.

«Пионер-11» был запущен 6 апреля 1973 года с помощью ракеты «Атлас». Мимо Юпитера аппарат пролетел в декабре 1974 года и передал подробные снимки планеты, полюсов и Большого красного пятна. 2 декабря аппарат пролетел на расстоянии около 42 828 км от кромки облаков планеты. Была определена масса спутника Калисто. Во время пролёта был совершён гравитационный манёвр для совершения последующего пролёта мимо Сатурна. После пролёта, 16 апреля 1975 года был отключен датчик метеороидов на аппарате. 1 сентября 1979 года он прошёл на расстоянии около 20 тысяч км от облачной поверхности Сатурна, произведя различные измерения и передав фотографии планеты и её спутника Титана. К этому времени оба аппарата программы «Вояджер» уже также пролетели мимо Юпитера и направлялись к Сатурну. Пионер-11 было решено перенаправить на схожую с «Вояджерами» траекторию для проверки возможности пролёта этих двух спутников рядом с планетой. Если бы там были какие-либо небольшие частицы колец, не позволявшие пролететь рядом с Сатурном, полёт к Урану и Нептуну был бы невозможен. Последний сигнал от «Пионера-11» был получен 30 сентября 1995 года. После этого направление его антенны на Землю было утеряно, и аппарат не мог маневрировать, чтобы вернуть его. Продолжает ли «Пионер-11» передачу сигналов – неизвестно, его дальнейшее отслеживание не планируется.

Всего было создано и отправлено в космос два аппарата серии «Вояджер»: «Вояджер-1» и «Вояджер-2». Аппараты были созданы в Лаборатории реактивного движения (Jet Propulsion Laboratory – JPL) НАСА. Проект считается одним из самых успешных и результативных в истории межпланетных исследований – оба «Вояджера» впервые передали качественные снимки Юпитера и Сатурна, а «Вояджер-2» впервые достиг Урана и Нептуна. «Вояджеры» стали третьим и четвёртым космическими аппаратами, план полёта которых предусматривал вылет за пределы Солнечной системы (первыми двумя были «Пионер-10» и «Пионер-11»). Первым в истории аппаратом, достигшим границ гелиосферы (фото 5.3) и вышедшим за её пределы, стал «Вояджер-1».

После встречи с Нептуном траектория «Вояджера-2» отклонилась к югу. Теперь его полёт проходит под углом 48° к эклиптике, в южной полусфере. «Вояджер-1» поднимается над эклиптикой (начальный угол 38°). Аппараты навсегда покидают пределы Солнечной системы. В ноябре 2017 года двигатели «Вояджера-1» были успешно запущены после 37 лет простоя. Это было сделано для корректировки ориентации с тем, чтобы антенна аппарата была направлена на Землю.


Фото 5.3. Гелиосфера и планеты Солнечной системы.


Учёные17 надеются, что связь с «Вояджерами» удастся поддерживать и после того, как они пересекут гелиопаузу, примерно до 2025 года. Сейчас «Вояджер-2» находится на расстоянии 123,6 астрономических единиц от Земли, а «Вояджер-1» – на расстоянии 148,7 астрономических единиц, это самый удаленный рукотворный объект. «Вояджер-2» покинул (фото 5.3) гелиосферу «защитный пузырь из частиц и магнитных полей, созданный Солнцем», говорится в сообщении. Аппарат вошел в межзвездное пространство на расстоянии 18 миллиардов километров от Земли, далеко за орбитой Плутона, еще 5 ноября 2018 года. Еще год понадобился на то, чтобы собранная информация достигла Земли и была расшифрована специалистами.

 

Гравитационный маневр – это способ изменить направление движения космического аппарата, а так же увеличить или уменьшить его скорость, используя гравитацию массивных объектов и не используя ценное топливо на борту космического аппарата. Принцип действия гравитационного маневра можно описать следующим образом:

– если космический аппарат сближается с внутренней стороной орбиты планеты, то его скорость замедляется,

– если же аппарат пролетает с внешней стороны орбиты планеты, то его скорость увеличится.

Этот принцип действия напоминает работу пращника, метающего снаряды. Именно поэтому часто гравитационный маневр называют «гравитационной пращей». При этом следует помнить, что в системе отсчета, связанной с небесным объектом, который используется для гравитационного маневра (например, зонд проходит около Венеры), никакого положительно эффекта для космического аппарата наблюдаться не будет, кроме изменения его траектории полета. Однако относительно других небесных тел (например, Солнца) космический аппарат станет двигаться быстрее/медленнее.

Самым знаменитым аппаратом, использовавшим гравитационный маневр, стал американский «Вояджер-2». Благодаря системе разгонов и торможений, он слетал в турне по Солнечной системе по маршруту «Земля-Юпитер-Сатурн-Уран-Нептун». А сейчас, получив ускорение от планет, уже вышел за границы Солнечной системы. Гравитационный маневр эффективнее применять вблизи объектов, обладающих большей скоростью и большей гравитацией. Идеальный кандидат на место такого объекта очевиден: звезды. Умы ученых давно будоражит идея пролететь на космическом аппарате вблизи нейтронных звезд. Согласно подсчетам, такой маневр смог бы разогнать корабль до трети от скорости света.

В системе отсчёта, связанной с Юпитером, космический аппарат разгоняется, проходит точку с минимальным расстоянием до планеты, а потом замедляется. Общая траектория космического аппарата представляет собой гиперболу, причём скорости до и после манёвра совпадают – с точки зрения наблюдателя, находящегося на Юпитере, никакого приращения скорости космического аппарата не происходит, только изменение направления его движения. Ситуация в системе отсчёта, связанной с Солнцем. В этой системе отсчёта планета движется по орбите (в случае Юпитера со скоростью более 13 км/с), поэтому скорость космического аппарата относительно Солнца может измениться. Юпитер увлекает космический аппарат за собой в своём движении по орбите, добавляя ему часть скорости своего орбитального движения. Чем больше масса планеты, тем бо́льшая часть скорости орбитального движения может быть передана аппарату. Именно поэтому гравитационные манёвры у Юпитера гораздо выгоднее, чем таковые у Марса, хотя скорость орбитального движения Марса почти вдвое выше, чем у Юпитера. Поскольку при этом происходит также и изменение направления движения космического аппарата, то модуль вектора приращения скорости может значительно превосходить орбитальную скорость движения планеты.

Повысить эффективность гравитационного маневра в 2—4 раза можно с использованием технологии Д. Кили, когда он в необходимые моменты по перемещению многотонной сферы попеременно включал вокруг её поверхности антигравитационную или супергравитационную оболочку, как противоположные или одинаковые по знаку заряда источнику тяготения поля Земли..

7К. Болдинг. Журнал «Истоки». «Большие проблемы Большого взрыва», вып. №1, 1999 г.
8По определению У. Гладстона (премьер министр Великобритании 1809—1898 годы) далеко не каждый специалист имеет право заниматься этим, не освободившись от узости своих специальных представлений и не обретя способности различать значительно более обширные планы бытия.
9Точнее было бы сказать пикоматерии, т.е. в размеры проникновения в пространство на глубину менее 10—12 см.
10При классическом познании мира от физики требовалась наглядность моделей, причём в центре физики должен стоять эксперимент, а теоретические построения должны стоять «на твёрдом фундаменте классической физики». После известного письменного соглашения между учёными двух противоположных направлений познания в ноябре 1940 году в Мюнхене эти требования отпали, а теории относительности, квантовой механики и прочие направления, так называемой математической физики, получили равноправное, если не приоритетное и навязанное СМИ, существование.
11Перенос электромагнитных полей возможен на расстояния более 1028 см, а гравитационных – на существенно меньшие пути, что и свидетельствует о разном физическом механизме их производства.
12Том 1, раздел Физические поля.
13Это одно из свидетельств, что нейтронные звёзды и карлики не стабильны и распадаются.
14Явления вращения Галактики и ускоренного движения при расширении Вселенной следует рассматривать, как аналогичные явления в торнадо и в «тарелке» Д. Серла.
15О. Х. Деревенский, А. Ф. Черняев, «Гравитация и антигравитация», Сборник №4, Москва 2010.
16NASA Administrator. The Pioneer Missions, NASA (26 March 2007). Wolfe J. H., Mihalov J. D., Collard, H. R., McKibbin D. D., Frank L. A., Intriligator D. S. Pioneer 10 observations of the solar wind interation with Jupiter. NASA, 1974. – 39 p.
17Exploring Unknown. John M. Logsdon, Editor. – Washington, D.C.: NASA History Office, 2011. – P. 286—287. – 796 p.