Tasuta

Time and Tide: A Romance of the Moon

Tekst
Märgi loetuks
Šrift:Väiksem АаSuurem Aa

You will now see the bearing which the movement of the inner satellite of Mars has on the doctrine of tidal evolution. As a legitimate consequence of that doctrine, we came to the conclusion that our earth-moon system must ultimately attain a condition in which the day is longer than the month. But this conclusion stood unsupported by any analogous facts in the more anciently-known truths of astronomy. The movement of the satellite of Mars, however, affords the precise illustration we want; and this fact, I think, adds an additional significance to the interest and the beauty of Professor Hall's discovery.

It is of particular interest to investigate the possible connection which the phenomena of tidal evolution may have had in connection with the geological phenomena of the earth. We have already pointed out the greater closeness of the moon to us in times past. The tides raised by the moon on the earth must therefore have been greater in past ages than they are now, for of course the nearer the moon the bigger the tide. As soon as the earth and the moon had separated to a considerable distance we may say that the height of the tide will vary inversely as the cube of the moon's distance; it will therefore happen, that when the moon was at half its present distance from us, his tide-producing capacity was not alone twice as much or four times as much, but even eight times as much as it is at present; and a much greater rate of tidal rise and fall indicates, of course, a preponderance in every other manifestation of tidal activity. The tidal currents, for instance, must have been much greater in volume and in speed; even now there are places in which the tidal currents flow at four or more miles per hour. We can imagine, therefore, the vehemence of the tidal currents which must have flowed in those days when the moon was a much smaller distance from us. It is interesting to view these considerations in their possible bearings on geological phenomena. It is true that we have here many elements of uncertainty, but there is, however, a certain general outline of facts which may be laid down, and which appears to be instructive, with reference to the past history of our earth.

I have all through these lectures indicated a mighty system of chronology for the earth-moon system. It is true that we cannot give our chronology any accurate expression in years. The various stages of this history are to be represented by the successive distances between the earth and the moon. Each successive epoch, for instance, may be marked by the number of thousands of miles which separate the moon from the earth.

But we have another system of chronology derived from a wholly different system of ideas; it too relates to periods of vast duration, and, like our great tidal periods, extends to times anterior to human history, or even to the duration of human life on this globe. The facts of geology open up to us a majestic chronology, the epochs of which are familiar to us by the succession of strata forming the crust of the earth, and by the succession of living beings whose remains these strata have preserved. From the present or recent age our retrospect over geological chronology leads us to look through a vista embracing periods of time overwhelming in their duration, until at last our view becomes lost, and our imagination is baffled in the effort to comprehend the formation of those vast stratified rocks, a dozen miles or more in thickness, which seem to lie at the very base of the stratified system on the earth, and in which it would appear that the dawnings of life on this globe may be almost discerned. We have thus the two systems of chronology to compare—one, the astronomical chronology measured by the successive stages in the gradual retreat of the moon; the other, the geological chronology measured by the successive strata constituting the earth's crust. Never was a more noble problem proposed in the physical history of our earth than that which is implied in the attempt to correlate these two systems of chronology. What we would especially desire to know is the moon's distance which corresponds to each of the successive strata on the earth. How far off, for instance, was that moon which looked down on the coal forests in the time of their greatest luxuriance? or what was the apparent size of the full moon at which the ichthyosaurus could have peeped when he turned that wonderful eye of his to the sky on a fine evening? But interesting as this great problem is, it lies, alas! outside the possibility of exact solution. Indeed we shall not make any attempt which must necessarily be futile to correlate these chronologies; all we can do is to state the one fact which is absolutely undeniable in the matter.

Let us fix our attention on that specially interesting epoch at the dawn of geological time, when those mighty Laurentian rocks were deposited of which the thickness is so astounding, and let us consider what the distance of the moon must have been at this initial epoch of the earth's history. All we know for certain is, that the moon must have been nearer, but what proportion that distance bore to the present distance is necessarily quite uncertain. Some years ago I delivered a lecture at Birmingham, entitled “A Glimpse through the Corridors of Time,” and in that lecture I threw out the suggestion that the moon at this primeval epoch may have only been at a small fraction of its present distance from us, and that consequently terrific tides may in these days have ravaged the coast. There was a good deal of discussion on the subject, and while it was universally admitted that the tides must have been larger in palæozoic times than they are at present, yet there was a considerable body of opinion to the effect that the tides even then may have been only about twice, or possibly not so much, greater than those tides we have at the present. What the actual fact may be we have no way of knowing; but it is interesting to note that even the smallest accession to the tides would be a valuable factor in the performance of geological work.

For let me recall to your minds a few of the fundamental phenomena of geology. Those stratified rocks with which we are now concerned have been chiefly manufactured by deposition of sediment in the ocean. Rivers, swollen, it may be, by floods, and turbid with a quantity of material held in suspension, discharge their waters into the sea. Granting time and quiet, this sediment falls to the bottom; successive additions are made to its thickness during centuries and thousands of years, and thus beds are formed which in the course of ages consolidate into actual rock. In the formation of such beds the tides will play a part. Into the estuaries at the mouths of rivers the tides hurry in and hurry out, and especially during spring tides there are currents which flow with tremendous power; then too, as the waves batter against the coast they gradually wear away and crumble down the mightiest cliffs, and waft the sand and mud thus produced to augment that which has been brought down by the rivers. In this operation also the tides play a part of conspicuous importance, and where the ebb and flow is greatest it is obvious that an additional impetus will be given to the manufacture of stratified rocks. In fact, we may regard the waters of the globe as a mighty mill, incessantly occupied in grinding up materials for future strata. The main operating power of this mill is of course derived from the sun, for it is the sun which brings up the rains to nourish the rivers, it is the sun which raises the wind which lashes the waves against the shore. But there is an auxiliary power to keep the mill in motion, and that auxiliary power is afforded by the tides. If then we find that by any cause the efficiency of the tides is increased we shall find that the mill for the manufacture of strata obtains a corresponding accession to its capacity. Assuming the estimate of Professor Darwin, that the tide may have had twice as great a vertical range of ebb and flow within geological times as it has at present, we find a considerable addition to the efficiency of the ocean in the manufacture of the ancient stratified rocks. It must be remembered that the extent of the area through which the tides will submerge and lay bare the country, will often be increased more than twofold by a twofold increase of height. A little illustration may show what I mean. Suppose a cone to be filled with water up to a certain height, and that the quantity of water in it be measured; now let the cone be filled until the water is at double the depth; then the surfaces of the water in the two cases will be in the ratio of the circles, one of which has double the diameter of the other. The areas of the two surfaces are thus as four to one; the volumes of the waters in the two cases will be in the proportion of two similar solids, the ratios of their dimensions being as two to one. Of course this means that the water in the one case would be eight times as much as in the other. This particular illustration will not often apply exactly to tidal phenomena, but I may mention one place that I happen to know of, in the vicinity of Dublin, in which the effect of the rise and fall of the tide would be somewhat of this description. At Malahide there is a wide shallow estuary cut off from the sea by a railway embankment, and there is a viaduct in the embankment through which a great tidal current flows in and out alternately. At low tide there is but little water in this estuary, but at high tide it extends for miles inland. We may regard this inlet with sufficient approximation to the truth as half of a cone with a very large angle, the railway embankment of course forming the diameter; hence it follows that if the tide was to be raised to double its height, so large an area of additional land would be submerged, and so vast an increase of water would be necessary for the purpose, that the flow under the railway bridge would have to be much more considerable than it is at present. In some degree the same phenomena will be repeated elsewhere around the coast. Simply multiplying the height of the tide by two would often mean that the border of land between high and low water would be increased more than twofold, and that the volume of water alternately poured on the land and drawn off it would be increased in a still larger proportion. The velocity of all tidal currents would also be greater than at present, and as the power of a current of water for transporting solid material held in suspension increases rapidly with the velocity, so we may infer that the efficiency of tidal currents as a vehicle for the transport of comminuted rocks would be greatly increased. It is thus obvious that tides with a rise and fall double in vertical height of those which we know at present would add a large increase to their efficiency as geological agents. Indeed, even were the tides only half or one-third greater than those we know now, we might reasonably expect that the manufacture of stratified rocks must have proceeded more rapidly than at present.

 

The question then will assume this form. We know that the tides must have been greater in Cambrian or Laurentian days than they are at present; so that they were available as a means of assisting other agents in the stupendous operations of strata manufacture which were then conducted. This certainly helps us to understand how these tremendous beds of strata, a dozen miles or more in solid thickness, were deposited. It seems imperative that for the accomplishment of a task so mighty, some agents more potent than those with which we are familiar should be required. The doctrine of tidal evolution has shown us what those agents were. It only leaves us uninformed as to the degree in which their mighty capabilities were drawn upon.

It is the property of science as it grows to find its branches more and more interwoven, and this seems especially true of the two greatest of all natural sciences—geology and astronomy. With the beginnings of our earth as a globe in the shape in which we find it both these sciences are directly concerned. I have here touched upon another branch in which they illustrate and confirm each other.

As the theory of tidal evolution has shed such a flood of light into the previously dark history of our earth-moon system, it becomes of interest to see whether the tidal phenomena may not have a wider scope; whether they may not, for instance, have determined the formation of the planets by birth from the sun, just as the moon seems to have originated by birth from the earth. Our first presumption, that the cases are analogous, is not however justified when the facts are carefully inquired into. A principle which I have not hitherto discussed here assumes prominence, and therefore we shall devote our attention to it for a few minutes.

Let us understand what we mean by the solar system. There is first the sun at the centre, which preponderates over all the other bodies so enormously, as shown in Fig. 4, in which the earth and the sun are placed side by side for comparison. There is then the retinue of planets, among the smaller of which our earth takes its place, a view of the comparative sizes of the planets being shown in Fig. 5.

Fig. 4.—Comparative sizes of Earth and Sun.


Not to embarrass ourselves with the perplexities of a problem so complicated as our solar system is in its entirety, we shall for the sake of clear reasoning assume an ideal system, consisting of a sun and a large planet—in fact, such as our own system would be if we could withdraw from it all other bodies, leaving the sun and Jupiter only remaining. We shall suppose, of course, that the sun is much larger than the planet, in fact, it will be convenient to keep in mind the relative masses of the sun and Jupiter, the weight of the planet being less than one-thousandth part of the sun. We know, of course, that both of those bodies are rotating upon their axes, and the one is revolving around the other; and for simplicity we may further suppose that the axes of rotation are perpendicular to the plane of revolution. In bodies so constituted tides will be manifested. Jupiter will raise tides in the sun, the sun will raise tides in Jupiter. If the rotation of each body be performed in a less period than that of the revolution (the case which alone concerns us), then the tides will immediately operate in their habitual manner as a brake for the checking of rotation. The tides raised by the sun on Jupiter will tend therefore to lengthen Jupiter's day; the tides raised on the sun by Jupiter will tend to augment the sun's period of rotation. Both Jupiter and the sun will therefore lose some moment of momentum. We cannot, however, repeat too often the dynamical truth that the total moment of momentum must remain constant, therefore what is lost by the rotation must be made up in the revolution; the orbit of Jupiter around the sun must accordingly be swelling. So far the reasoning appears similar to that which led to such startling consequences in regard to the moon.


Fig. 5.—Comparative sizes of Planets.


But now for the fundamental difference between the two cases. The moon, it will be remembered, always revolves with the same face towards the earth. The tides have ceased to operate there, and consequently the moon is not able to contribute any moment of momentum, to be applied to the enlargement of its distance from the earth; all the moment of momentum necessary for this purpose is of course drawn from the single supply in the rotation of the earth on its axis. But in the case of the system consisting of the sun and Jupiter the circumstances are quite different—Jupiter does not always bend the same face to the sun; so far, indeed, is this from being true, that Jupiter is eminently remarkable for the rapidity of his rotation, and for the incessantly varying aspect in which he would be seen from the sun. Jupiter has therefore a store of available moment of momentum, as has also of course the sun. Thus in the sun and planet system we have in the rotations two available stores of moment of momentum on which the tides can make draughts for application to the enlargement of the revolution. The proportions in which these two available sources can be drawn upon for contributions is not left arbitrary. The laws of dynamics provide the shares in which each of the bodies is to contribute for the joint purpose of driving them further apart.

Let us see if we cannot form an estimate by elementary considerations as to the division of the labour. The tides raised on Jupiter by the sun will be practically proportional to the sun's mass and to the radius of Jupiter. Owing to the enormous size of the sun, the efficiency of these tides and the moment of the friction-brake they produce will be far greater on the planet than will the converse operation of the planet be on the sun. Hence it follows that the efficiency of the tides in depriving Jupiter of moment of momentum will be greatly superior to the efficiency of the tides in depriving the sun of moment of momentum. Without following the matter into any close numerical calculation, we may assert that for every one part the sun contributes to the common object, Jupiter will contribute at least a thousand parts; and this inequality appears all the more striking, not to say unjust, when it is remembered that the sun is more abundantly provided with moment of momentum than is Jupiter—the sun has, in fact, about twenty thousand times as much.

The case may be illustrated by supposing that a rich man and a poor man combine together to achieve some common purpose to which both are to contribute. The ethical notion that Dives shall contribute largely, according to his large means, and Lazarus according to his slender means, is quite antagonistic to the scale which dynamics has imposed. Dynamics declares that the rich man need only give a penny to every pound that has to be extorted from the poor man. Now this is precisely the case with regard to the sun and Jupiter, and it involves a somewhat curious consequence. As long as Jupiter possesses available moment of momentum, we may be certain that no large contribution of moment of momentum has been obtained from the sun. For, returning to our illustration, if we find that Lazarus still has something left in his pocket, we are of course assured that Dives cannot have expended much, because, as Lazarus had but little to begin with, and as Dives only puts in a penny for every pound that Lazarus spends, it is obvious that no large amount can have been devoted to the common object. Hence it follows that whatever transfer of moment of momentum has taken place in the sun-Jupiter system has been almost entirely obtained at the expense of Jupiter. Now in the solar system at present, the orbital moment of momentum of Jupiter is nearly fifty thousand times as great as his present store of rotational moment of momentum. If, therefore, the departure of Jupiter from the sun had been the consequence of tidal evolution, it would follow that Jupiter must once have contained many thousands of times the moment of momentum that he has at present. This seems utterly incredible, for even were Jupiter dilated into an enormously large mass of vaporous matter, spinning round with the utmost conceivable speed, it is impossible that he should ever have possessed enough moment of momentum. We are therefore forced to the conclusion that the tides alone do not provide sufficient explanation for the retreat of Jupiter from the sun.

There is rather a subtle point in the considerations now brought forward, on which it will be necessary for us to ponder. In the illustration of Dives and Lazarus, the contributions of Lazarus of course ceased when his pockets were exhausted, but those of Dives will continue, and in the lapse of time may attain any amount within the utmost limits of Dives' resources. The essential point to notice is, that so long as Lazarus retains anything in his pocket, we know for certain that Dives has not given much; if Lazarus, however, has his pocket absolutely empty, and if we do not know how long they may have been in that condition, we have no means of knowing how large a portion of wealth Dives may not have actually expended. The turning-point of the theory thus involves the fact that Jupiter still retains available moment of momentum in his rotation; and this was our sole method of proving that the sun, which in this case was Dives, had never given much. But our argument must have taken an entirely different line had it so happened that Jupiter constantly turned the same face to the sun, and that therefore his pockets were entirely empty in so far as available moment of momentum is concerned. It would be apparently impossible for us to say to what extent the resources of the sun may not have been drawn upon; we can, however, calculate whether in any case the sun could possibly have supplied enough moment of momentum to account for the recession of Jupiter. Speaking in round numbers, the revolutional moment of momentum of Jupiter is about thirty times as great as the rotational moment of momentum at present possessed by the sun. I do not know that there is anything impossible in the supposition that the sun might, by an augmented volume and an augmented velocity of rotation, contain many times the moment of momentum that it has at this moment. It therefore follows that if it had happened that Jupiter constantly bent the same face to the sun, there would apparently be nothing impossible in the fact that Jupiter had been born of the sun, just as the moon was born of the earth. These same considerations should also lead us to observe with still more special attention the development of the earth-moon system. Let us restate the matter of the earth and moon in the light which the argument with respect to Jupiter has given us. At present the rotational moment of momentum of the earth is about a fifth part of the revolutional moment of momentum of the moon. Owing to the fact that the moon keeps the same face to us, she has now no available moment of momentum, and all the moment of momentum required to account for her retreat has of late come from the rotation of the earth; but suppose that the moon still had some liquid on its surface which could be agitated by tides, suppose further that it did not always bend the same face towards us, that it therefore had some available moment of momentum due to its rotation on which the tides could operate, then see how the argument would have been altered. The gradual increase of the moon's distance could be provided for by a transfer of moment of momentum from two sources, due of course to the rotational velocities of the two bodies. Here again the moon and the earth will contribute according to that dynamical but very iniquitous principle which regulated the appropriations from the purses of Dives and Lazarus. The moon must give not according to her abundance, but in the inverse ratio thereof—because she has little she must give largely. Nor shall we make an erroneous estimate if we say that nine-tenths of the whole moment of momentum necessary for the enlargement of the orbit would have been exacted from the moon; that means that the moon must once have had about five or six times as much moment of momentum as the earth possesses at this moment. Considering the small size of the moon, this could only have arisen by terrific velocity of rotation, which it is inconceivable that its materials could ever have possessed.

 

This presents the demonstration of tidal evolution in a fresh light. If the moon now departed to any considerable extent from showing the constant face to the earth, it would seem that its retreat could not have been caused by tides. Some other agent for producing the present configuration would be necessary, just as we found that some other agent than the tides has been necessary in the case of Jupiter.

But I must say a few words as to the attitude of this question with regard to the entire solar system. This system consists of the sun presiding at the centre, and of the planets and their satellites in revolution around their respective primaries, and each also animated by a rotation on its axis. I shall in so far depart from the actual configuration of the system as to transform it into an ideal system, whereof the masses, the dimensions, and the velocities shall all be preserved; but that the several planes of revolution shall be all flattened into one plane, instead of being inclined at small angles as they are at present; nor will it be unreasonable for us at the same time to bring into parallelism all the axes of rotation, and to arrange that their common directions shall be perpendicular to the plane of their common orbits. For the purpose of our present research this ideal system may pass for the real system.

In its original state, whatever that state may have been, a magnificent endowment was conferred upon the system. Perhaps I may, without derogation from the dignity of my subject, speak of the endowment as partly personal and partly entailed. The system had of course different powers with regard to the disposal of the two portions; the personal estate could be squandered. It consisted entirely of what we call energy; and considering how frequently we use the expression conservation of energy, it may seem strange to say now that this portion of the endowment has been found capable of alienation, nay, further, that our system has been squandering it persistently from the first moment until now. Although the doctrine of the conservation of energy is, we have every reason to believe, a fundamental law affecting the whole universe, yet it would be wholly inaccurate to say that any particular system such as our solar system shall invariably preserve precisely the same quantity of energy without alteration. The circumstance that heat is a form of energy indeed negatives this supposition. For our system possesses energy of all the different kinds: there is energy due to the motions both of rotation and of revolution; there is energy due to the fact that the mutually attracting bodies of our system are separated by distances of enormous magnitude; and there is also energy in the form of heat; and the laws of heat permit that this form of energy shall be radiated off into space, and thus disappear entirely, in so far as our system is concerned. On the other hand, there may no doubt be some small amount of energy accruing to our system from the other systems in space, which like ours are radiating forth energy. Any gain from this source, however, is necessarily so very small in comparison to the loss to which we have referred, that it is quite impossible that the one should balance the other. Though it is undoubtedly true that the total quantity of energy in the universe is constant, yet the share of that energy belonging to any particular system such as ours declines steadily from age to age.

I may indeed remark, that the question as to what becomes of all the radiant energy which the millions of suns in the universe are daily discharging offers a problem apparently not easy to solve; but we need not discuss the matter at present, we are only going to trace out the vicissitudes of our own system; and whatever other changes that system may exhibit, the fact is certain that the total quantity of energy it contains is declining.

Of the two endowments of energy and of moment of momentum originally conferred on our system the moment of momentum is the entailed estate. No matter how the bodies may move, no matter how their actions may interfere with one another, no matter how this body is pulled one way and the other body that way, the conservation of moment of momentum is not imperilled, nor, no matter what losses of heat may be experienced by radiation, could the store of moment of momentum be affected. The only conceivable way in which the quantity of moment of momentum in the solar system could be tampered with is by the interference of some external attracting body. We know, however, that the stars are all situated at such enormous distances, that the influences they can exert in the perturbation of the solar system are absolutely insensible; they are beyond the reach of the most delicate astronomical measurements. Hence we see how the endowment of the system with moment of momentum has conferred upon that system a something which is absolutely inalienable, even to the smallest portion.

Before going any further it would be necessary for me to explain more fully than I have hitherto done the true nature of the method of estimating moment of momentum. The moment of momentum consists of two parts: there is first that due to the revolution of the bodies around the sun; there is secondly the rotation of these bodies on their axes. Let us first think simply of a single planet revolving in a circular orbit around the sun. The momentum of that planet at any moment may be regarded as the product of its mass and its velocity; then the moment of momentum of the planet in the case mentioned is found by multiplying the momentum by the radius of the path pursued. In a more general case, where the planet does not revolve in a circle, but pursued an elliptic path, the moment of momentum is to be found by multiplying the planet's velocity and its mass into the perpendicular from the sun on the direction in which the planet is moving.

These rules provide the methods for estimating all the moments of momentum, so far as the revolutions in our system are concerned. For the rotations somewhat more elaborate processes are required. Let us think of a sphere rotating round a fixed axis. Every particle of that sphere will of course describe a circle around the axis, and all these circles will lie in parallel planes. We may for our present purpose regard each atom of the body as a little planet revolving in a circular orbit, and therefore the moment of momentum of the entire sphere will be found by simply adding together the moments of momentum of all the different atoms of which the sphere is composed. To perform this addition the use of an elaborate mathematical method is required. I do not propose to enter into the matter any further, except to say that the total moment of momentum is the product of two factors—one the angular velocity with which the sphere is turning round, while the other involves the sphere's mass and dimensions.

Teised selle autori raamatud