Tasuta

Les Merveilles de la Locomotion

Tekst
iOSAndroidWindows Phone
Kuhu peaksime rakenduse lingi saatma?
Ärge sulgege akent, kuni olete sisestanud mobiilseadmesse saadetud koodi
Proovi uuestiLink saadetud

Autoriõiguse omaniku taotlusel ei saa seda raamatut failina alla laadida.

Sellegipoolest saate seda raamatut lugeda meie mobiilirakendusest (isegi ilma internetiühenduseta) ja LitResi veebielehel.

Märgi loetuks
Šrift:Väiksem АаSuurem Aa

La nécessité de traverser de larges fleuves et des vallées profondes, imposée par le tracé des grandes voies ferrées, a donné naissance à des ouvrages dont nos pères n'abordaient la construction qu'à de rares intervalles et qu'ils mettaient de longues années à élever. Nous voulons parler d'abord de ces imposants viaducs en maçonnerie qui l'emportent bien, à notre avis, sur les aqueducs tant vantés des Romains et des Sarrazins, puis de ces ouvrages en tôle portés sur piles en maçonnerie ou sur piles métalliques, dont la construction remonte à quelques années seulement et qui s'est déjà beaucoup répandue, tant elle fournit un moyen économique et facile de franchir les vallées profondes.

Les viaducs en maçonnerie, construits pour le passage des chemins de fer, sont remarquables à divers titres: leur longueur, leur hauteur, la mauvaise nature du terrain qui les supporte, augmentent les difficultés de leur construction et en élèvent le prix de revient.

Parmi les viaducs les plus longs, on cite surtout celui qui a été construit sur les lagunes de Venise pour le passage du chemin de Vicence, et qui a 3,598 mètres de longueur;

Celui qui traverse la ville de Nîmes, ayant 1,670 mètres de longueur, sur le chemin de Tarascon à Cette;

Celui de Wittemberg, qui a 1,147 mètres de longueur;

Enfin celui d'Arles, sur le chemin de Lyon à Marseille, et qui a 769 mètres de longueur.

La hauteur la plus grande de ces viaducs ne dépasse pas 15 mètres.

Les viaducs les plus remarquables par leur grande longueur et par leur grande hauteur, sont: celui de Nogent-sur-Marne, qui a une longueur totale de 830 mètres et une hauteur de 29 mètres. Ce viaduc franchit la rivière au moyen de trois arches de 50 mètres d'ouverture. Il a été construit en dix-huit mois. Le viaduc de l'Indre mesure 751 mètres de longueur totale et 23 mètres de hauteur maxima.

L'un des ouvrages les plus renommés par sa légèreté est le viaduc de Chaumont, sur le chemin de Mulhouse à Gray. Sa longueur est de 600 mètres et sa plus grande hauteur de 50 mètres. Il a été exécuté en quinze mois.

L'un des viaducs les plus remarquables par ses dimensions et le plus grand de ceux construits en Allemagne pour le passage d'un chemin de fer, est celui du Goeltzschthal, sur le chemin de fer saxo-bavarois, entre Reichenbach et Plauen. Il a 579 mètres de longueur et sa hauteur maxima est de 80m,37; c'est à peu près la même que celle de notre aqueduc de Roquefavour, qui a 81 mètres. C'est la hauteur des tours de Notre-Dame.

Nous pourrions citer encore plusieurs ouvrages en maçonnerie dignes de fixer l'attention; la France, les environs de Paris même en offrent de nombreux, mais nous devons indiquer maintenant quelques-uns des magnifiques travaux en charpente construits en Amérique, en Allemagne et en Russie, et qui, forêts suspendues, sont de véritables merveilles d'assemblage. Les uns sont à poutres droites, comme celui de Peacock, celui du Connecticut (384 mètres de longueur, avec des travées de 54 mètres);

Celui de Landore (496 mètres de longueur);

Celui de la Mesta, sur le chemin de Saint-Pétersbourg à Moscou (547 mètres de longueur, avec des travées de 60 mètres et une hauteur maxima de 32 mètres);

Les autres sont en arc de cercle, comme celui de Willington (319 mètres de longueur avec des arcs de 39 à 35 mètres de largeur);

Celui de la rivière l'Etherow (long de 158 mètres, avec une arche de 54 mètres d'ouverture et une hauteur maxima de 41 mètres);

Celui de la Cascade-Glen (présentant un arc de cercle de 84 mètres d'ouverture, le plus grand qu'on ait encore construit, et 53 mètres de hauteur).

Mais le plus remarquable de ces ouvrages est le pont du Haut-Portage sur le chemin de Buffalon à New-York; sa longueur est de 267 mètres et sa hauteur de 79m,50!

Le fer vient parer d'une manière avantageuse aux inconvénients des constructions en charpente. On peut dire que la construction des chemins de fer a produit les ponts en tôle, de même aussi que ces combles légers abritant nos grandes gares et une foule de constructions métalliques de différents genres.

Les ponts en tôle sont ou à poutres droites, pleines ou à treillis, ou en arc de cercle. Les plus remarquables, parmi les premiers, sont: le grand pont Britannia, sur le détroit de Menai, dont l'ingénieur est Robert Stephenson (longueur entre culées: 453 mètres en quatre travées; hauteur de la pile du milieu 67 mètres);

Le viaduc de Crumlin, pour le chemin de fer de Pontypool à Swansea (longueur: 498 mètres, 10 travées de 45m,75, hauteur du rail, au-dessus du fond de la vallée: 58m,56);

Le grand pont sur la Vistule, à Dirschau (chemin de fer de l'Est de la Prusse: six travées de 138m,40 de long chacune; longueur totale, 882 mètres);

Le pont sur le Sitter (163 mètres de long en trois travées, 62 mètres de hauteur);

Le pont de Marienbourg (en deux travées de 106 mètres chacune).

Le premier pont en tôle construit en France est celui d'Asnières, sur le chemin de l'Ouest, qui est dû à M. Eug. Flachat; il a remplacé le pont de bois brûlé en 1848 (sa longueur est de 168 mètres en cinq travées).

D'autres ponts du même genre se sont succédé bientôt en grand nombre. On remarque surtout le pont de Langon (228 mètres en trois travées) et celui de Bordeaux (629m,11), sur la Garonne. – Dans ces dernières, années, on a construit sur le Rhin le fameux pont de Kehl (235 mètres de longueur), qui réunit le duché de Bade à la France, et que ses fondations, sur un sol de gravier d'une profondeur indéfinie, rend particulièrement remarquable. Il a coûté 8 millions.

Nous ne citerons, comme type de légèreté des ponts en arc, que le pont d'Arcole, construit à Paris, en face de l'Hôtel de ville, pour remplacer l'ancien pont suspendu, qui donnait seulement passage aux piétons.

Mentionnons aussi le fameux pont de Saltash, sur le bras de mer de Hamoaze, près de Plymouth, et dont Brunel est l'ingénieur (deux travées de 138m,68 chacune, laissent aux navires, au moment de la haute mer, un passage libre de 30m,48 de hauteur).

Mais un des ouvrages construits avec le plus de hardiesse est celui qui a été lancé par l'ingénieur Rœbling au-dessus des chutes du Niagara (249m,75 de longueur en une seule travée, à 74 mètres au-dessus de la rivière). Ce pont est à la fois en treillis et suspendu. Quatre câbles s'appuient sur les piles élevées, placées sur les deux rives; deux supportent le tablier supérieur sur lequel passe la voie unique de fer, deux autres supportent le tablier inférieur qui sert au passage des voitures et des piétons. Mais, comme les grands vents, qui soufflent dans ces parages, auraient pu soulever le tablier, des haubans, partant des parois de la roche, viennent s'attacher, en divergeant, à différents points du tablier et lui donner une rigidité considérable. Cet ouvrage n'a coûté que deux millions.

Parmi les ponts en fonte, nous ne citerons que le beau pont de Tarascon (592 mètres de longueur, sept arches de 60 mètres d'ouverture), et le viaduc de Newcastle (408 mètres de longueur, six travées de 39 mètres). Tous les ouvrages en fonte, dès qu'ils atteignent une portée de 8 à 10 mètres, sont en arc; les défauts, inhérents à la fabrication de la fonte, ne permettent pas son emploi en grandes poutres droites.

Tels sont les plus remarquables des grands ouvrages dont les chemins de fer ont nécessité l'exécution. Ils occupent, dans la construction des voies ferrées, une place si importante et ils excitent à un si haut point l'admiration, que nous n'avons pas cru devoir sans en faire connaître au moins les noms et les dimensions principales.

C. – Superstructure. – Stations et maisons de garde. – La voie: Les ornières des mines de Newcastle. Ornières creuses et saillantes. Roues plates et à rebords. – Rails méplats, à champignon simple, à double champignon, Vignole, Brunel, Barlow, Hartwich; rails en acier. – Traverses en bois et métalliques. – Coussinets, coins, éclisses, boulons, crampons, chevillettes, etc

La plate-forme du chemin est dressée, l'infrastructure est maintenant terminée. Les stations et les maisons de garde s'élèvent, depuis l'humble halte, qui n'a parfois qu'une femme pour tout personnel, jusqu'à la grande gare avec ses centaines d'agents. Les rails et les traverses sont en dépôt aux extrémités de la ligne et sur divers points de son parcours. La pose commence, les wagons, les locomotives la suivent; le ballast, cette matière perméable et élastique qui doit former son lit, est apporté, et la commission administrative peut procéder à la réception du chemin.

Avant de parler des machines et des wagons, du matériel locomoteur, en un mot, arrêtons-nous au matériel fixe, à ces humbles barres de fer couchées sur la poudre des chemins, comme on les a nommées.

C'est à la fin du dix-huitième siècle que l'on fait remonter l'emploi des premières ornières saillantes en bois, et c'est dans le voisinage des mines de Newcastle que ces rails furent employés pour la première fois. Les wagonnets, ou chaldrons, pleins de houille, allaient sur les voies artificielles de l'orifice du puits aux bords de la Tyne, où ils déchargeaient leur contenu dans les bateaux. Mais ces bois s'usaient, se fendillaient et exigeaient un remplacement fréquent et coûteux. L'action alternative du soleil et de la pluie hâtait leur fin. C'est alors qu'on eut l'idée de les recouvrir, pour en prolonger la durée, de bandes de fer dans les parties les plus sujettes aux détériorations. Cette amélioration partielle de la voie de transport devint bientôt générale: le bois, enfin, fut écarté comme rail et remplacé par la fonte. Cette application est due à l'ingénieur William Reynolds et date de cent ans environ. Elle remonte à l'année 1768, selon les uns, à l'année 1780, selon les autres. Mais les rails n'avaient pas la forme qu'ils ont aujourd'hui; ils étaient plats, avec un rebord saillant intérieur, la roue était semblable à celle des voitures ordinaires. Vers 1789, Jessop transforma la jante des roues et leur donna le rebord qu'on voit aujourd'hui aux roues des wagons; les rails se réduisirent alors à de simples barres de fer fixées sur des traverses en bois.

 

Pour utiliser toute la résistance du fer, ces barres ou mieux ces lames de fer étaient placées sur leur tranche ou de champ, comme disent les ouvriers, et maintenues dans cette position par le serrage d'un coin en bois dans l'entaille d'une traverse. La voie était donc bien simple: rails, traverses et coins, c'était tout. Les petites voies de terrassement ne sont pas autres encore aujourd'hui. Les rails en fer s'obtenaient par le laminage; c'était la méthode appliquée depuis plus de deux siècles à la fabrication des monnaies, à Paris, et que l'Angleterre pratiquait depuis l'année 1663.

Les améliorations de la voie actuelle de nos chemins de fer résultent principalement des perfectionnements qui ont été apportés à la préparation de ces parties essentielles. On reconnut bientôt que les rails méplats, sous les fortes charges, creusaient des sillons dans la jante des roues et les mettaient promptement hors de service, qu'au passage des courbes et sous l'action de la force centrifuge ils se déjetaient en dehors de la courbe et faisaient ventre entre leurs supports. De là, la nécessité d'abandonner la forme méplate, pour donner aux rails une saillie latérale, capable à la fois d'empêcher ces déformations et de fournir une surface de roulement bombée et non plus tranchante. Le champignon du rail était inventé. Le désir d'utiliser le rail après l'usure de son champignon supérieur, donna l'idée de lui ajouter un champignon inférieur, symétrique du premier, permettant son retournement dans ses supports et donnant un nouveau service.

Notre rail actuel, à double champignon, n'est autre que celui que nous venons de décrire. C'est le propre des grandes inventions d'atteindre dès le début le degré de perfectionnement qu'elles ne doivent guère dépasser. Tantôt l'âme du rail est plus haute et plus étroite, le champignon plus ou moins bombé, plus ou moins large; mais ces variations se chiffrent par millimètres ou par fractions de millimètre. La forme et les dimensions générales varient peu. Il en est de même du coussinet ou chair, de cette main de fonte dans laquelle on serre le rail à l'aide d'un coin en bois, et de ce coin lui-même.

La traverse est une bille de bois, de forme quadrangulaire, triangulaire ou semi-circulaire dont la nature varie suivant les pays. En France et en Belgique, en Allemagne, en Angleterre, on emploie le chêne, le hêtre, le sapin et le pin préparé. En Suisse, on emploie le mélèze; en Amérique, on a employé le gaïac.

Les coins sont en chêne et ne présentent rien de particulier.

Une autre espèce de rail est employée en Amérique, en Allemagne, et sur quelques-unes de nos lignes françaises. C'est le rail à patin, américain, ou Vignoles, du nom de l'ingénieur anglais qui, le premier, l'a employé en Angleterre. Il ne diffère du rail à double champignon qu'en ce que le champignon inférieur a été remplacé par un patin qui lui sert d'appui sur la traverse, à laquelle il est relié par des crampons en fer. Ce rail ne peut donc pas être retourné comme le premier, mais l'avantage dont il est privé est diversement apprécié par les ingénieurs et contesté par certains d'entre eux.

Nous indiquerons encore deux sortes de rails, dont l'usage tend de plus en plus à disparaître et que les Compagnies utilisent seulement aujourd'hui pour l'établissement de leurs voies de garage; ce sont: le rail Brunel (bridge-rail), qui a la forme d'un U renversé, se posant sur longrines, et le rail Barlow, dont la section est celle d'un V renversé, s'appuyant directement sur le ballast.

La dernière Exposition universelle a fait connaître une nouvelle espèce de rails employée en Allemagne, et qui présenterait des avantages notables sur les précédents, c'est le rail Hartwich, essayé sur les chemins de fer de Coblentz à Oberlahnstein et de Euskirchen à Mechernich. Ce rail n'est autre que le rail Vignoles dont l'âme a augmenté de hauteur, et dont le patin s'est élargi. Il se pose directement dans le ballast sans aucun intermédiaire. Mais il pèse 60 kilogr. environ le mètre courant: il coûte par conséquent fort cher. Et, comme le temps seul permet de porter un jugement sur les mérites de ce rail, on doit, avant d'abandonner les systèmes déjà essayés, attendre, pour l'adopter, que l'expérience ait fait connaître sa véritable valeur.

Les charges imposées aux véhicules des chemins de fer, wagons et machines, ont tellement augmenté depuis leur origine, que, pour ne pas voir les rails s'écraser et se déformer promptement, on a dû en augmenter la résistance en en forçant les dimensions et par conséquent le poids. Les premiers rails employés au chemin de Saint-Étienne, à Lyon, pesaient 13 kilogr. le mètre courant. Bientôt ce poids dut être porté à 25 kilogr., et aujourd'hui, sur nos grandes lignes, il est de 30 à 37 kilogr. Ce chiffre s'élève même parfois à 40 kilogr. Encore les rails ne durent-ils guère qu'une quinzaine d'années! On comprend que ce chiffre varie dans d'assez grandes limites, suivant la qualité des rails, leur position en plaine, en rampe ou en courbe, et la circulation qui s'opère à leur surface. Au bout de ce temps, ils ont perdu environ 100 francs par tonne de leur valeur, repassent à la forge, où ils sont employés à fabriquer des rails neufs, qui rentrent dans les parcs de la voie.

Malgré l'économie qui résulte de ce réemploi des vieux rails, l'opération de la réfection des voies ne laisse pas que d'être très-coûteuse, aussi a-t-on cherché à employer des rails capables de résister plus longtemps aux causes de destruction rapide auxquelles ils sont soumis dans certains cas. On a associé le fer à l'acier, celui-ci occupant la surface des tables de roulement, qui s'altèrent par le frottement, mais on a été peu satisfait du résultat obtenu, le fer et l'acier ne se soudant que difficilement. On en est venu à fabriquer des rails exclusivement en acier fondu Bessemer. Plusieurs Compagnies en ont fait déjà des commandes importantes pour les parties les plus fatiguées de leur réseau.

Quant aux traverses, on cherche de plus en plus à substituer la tôle au bois. La durée et la résistance du fer, qualités si précieuses pour des travaux dont l'existence doit être indéfinie, justifient ces recherches; mais des difficultés sérieuses, telles que le mode de fixation du rail sur la traverse, le bourrage facile de celle-ci, retardent la solution du problème. On ne peut, d'ailleurs, contrairement à un préjugé assez répandu, adopter promptement toutes les innovations qui sont proposées pour l'amélioration des voies. Les Compagnies travaillent sans cesse à perfectionner ce qui existe; leurs essais sont constants, mais elles sont trop soucieuses de la sécurité des voyageurs (elles savent ce que coûtent les bras ou les jambes cassés), elles sont trop soucieuses aussi des intérêts qui leur sont confiés (l'emploi d'un rail, trop promptement adopté, a coûté à une Compagnie 14 millions et a entraîné une perte de 8 millions), pour s'engager à la légère dans des innovations d'une valeur incertaine et que leur application sur une grande échelle peut rendre des plus compromettantes.

On se fera une idée de l'importance de ces questions quand on saura qu'au cours de 210 francs la tonne, la valeur des rails du réseau exploité était représentée, en 1867, par une somme de 386 millions de francs.

Mais revenons aux traverses métalliques. Les essais continuent, les Compagnies font des commandes, constatent les avantages et les inconvénients. Elles vont avec la prudence qu'exige le renouvellement, au fur et à mesure des besoins, de 25 millions de traverses en bois, qui, au prix variable de 3 à 6 francs, représentent un capital de 113 millions de francs. En comptant les traverses en tôle à 180 francs la tonne, leur ensemble coûterait 180 millions, soit 67 millions de plus. Quelle sera la durée? Là est la question. L'avenir répondra.

Nous ne nous arrêterons pas aux pièces accessoires, éclisses, selles, boulons, chevillettes, crampons, etc., qui servent à réunir deux rails qui se suivent, à leur fournir un appui sur la traverse ou à les fixer à celle-ci. Ce sont choses de détail. Nous parlerons maintenant des véhicules des chemins de fer.

III. – LES WAGONS

A. – Les wagons en général. – Voitures à 2, 4, 6 et 8 roues. – Construction d'un wagon: châssis, caisse

La construction de la première voiture de chemins de fer n'a pas été aussi simple qu'on serait tout d'abord tenté de le croire. Il semble, en effet, a priori, qu'il y a bien moins de difficulté à faire suivre aux roues munies de rebords, d'un véhicule, deux ornières saillantes ou deux ornières creuses, qu'à les faire courir sur un chemin semé d'obstacles. Il n'en est rien.

On a reconnu, dès le début, que l'emploi des voitures à deux roues était absolument impossible.

On a essayé alors des voitures à quatre roues, en laissant aux essieux la faculté de se placer dans une direction normale aux courbes parcourues, et aux roues la mobilité sur ces essieux qu'on regardait aussi comme indispensable au parcours de chemins de différentes longueurs sur les deux files de rails. Mais la pratique, ainsi qu'il arrive parfois, a renversé ces prévisions, et l'on a bientôt reconnu que le véhicule ne pouvait être maintenu sur le rail qu'à la double condition d'avoir ses essieux toujours parallèles et solidaires du châssis du véhicule, et les roues jumelles invariablement fixées sur l'essieu qui les porte.

On a créé ainsi des résistances accessoires, mais on a assuré le maintien du véhicule sur la voie.

Du wagon à quatre roues, on est passé au wagon à six roues, l'un des essieux pouvant se déplacer d'une petite quantité dans un plan parallèle à celui de la voie, de manière à prendre, au passage d'une courbe, la direction de son rayon; les roues restant, d'ailleurs, toujours calées sur les essieux.

Enfin, on a fait des wagons à huit roues, en groupant les essieux deux par deux et composant deux trucks indépendants, reliés à la caisse du véhicule au moyen de chevilles ouvrières, comme celles qui sont à l'avant-train des voitures ordinaires.

Ces premières expériences achevées, on s'est occupé de la construction du wagon, en faisant de chacune de ses parties, appelées à répondre à des besoins nouveaux, une étude minutieuse.

Il fallait s'occuper des attaches des wagons les uns aux autres, des chocs des wagons entre eux, de la suspension du véhicule sur les roues, des moyens de modérer la vitesse à certains moments de la marche. On composa alors un châssis, sorte de cadre en charpente, rendu indéformable par des pièces mises en croix: on eut une carcasse s'appliquant, d'une manière à peu près générale, à tous les véhicules quelle que fût leur destination spéciale, et portant, à ses extrémités, les crochets d'attelage et les tampons de choc, les premiers reliés à la partie centrale, les seconds aux extrémités des ressorts disposés au centre du châssis; sur les côtés, les plaques de garde qui assurent le parallélisme des essieux tout en permettant les mouvements d'oscillation des boîtes à graisse sous l'action des ressorts de suspension.

À ces parties essentielles, on ajouta les ferrures, les chaînes de sûreté et, selon la destination du wagon, des marchepieds, un frein, etc.