Tasuta

Novum Organum

Tekst
iOSAndroidWindows Phone
Kuhu peaksime rakenduse lingi saatma?
Ärge sulgege akent, kuni olete sisestanud mobiilseadmesse saadetud koodi
Proovi uuestiLink saadetud

Autoriõiguse omaniku taotlusel ei saa seda raamatut failina alla laadida.

Sellegipoolest saate seda raamatut lugeda meie mobiilirakendusest (isegi ilma internetiühenduseta) ja LitResi veebielehel.

Märgi loetuks
Šrift:Väiksem АаSuurem Aa

In short, this point is one of the principal foundations of the magic experiments (of which we shall presently speak), where a small mass of matter overcomes and regulates a much larger, if there but be an anticipation of motion, by the velocity of one before the other is prepared to act.

Finally, the point of the first and last should be observed in all natural actions. Thus, in an infusion of rhubarb the purgative property is first extracted, and then the astringent; we have experienced something of the same kind in steeping violets in vinegar, which first extracts the sweet and delicate odor of the flower, and then the more earthy part, which disturbs the perfume; so that if the violets be steeped a whole day, a much fainter perfume is extracted than if they were steeped for a quarter of an hour only, and then taken out; and since the odoriferous spirit in the violet is not abundant, let other and fresh violets be steeped in the vinegar every quarter of an hour, as many as six times, when the infusion becomes so strengthened, that although the violets have not altogether remained there for more than one hour and a half, there remains a most pleasing perfume, not inferior to the flower itself, for a whole year. It must be observed, however, that the perfume does not acquire its full strength till about a month after the infusion. In the distillation of aromatic plants macerated in spirits of wine, it is well known that an aqueous and useless phlegm rises first, then water containing more of the spirit, and, lastly, water containing more of the aroma; and many observations of the like kind, well worthy of notice, are to be made in distillations. But let these suffice as examples.150

XLVII. In the twenty-third rank of prerogative instances we will place instances of quantity, which we are also wont to call the doses of nature (borrowing a word from medicine). They are such as measure the powers by the quantity of bodies, and point out the effect of the quantity in the degree of power. And in the first place, some powers only subsist in the universal quantity, or such as bears a relation to the confirmation and fabric of the universe. Thus the earth is fixed, its parts fall. The waters in the sea flow and ebb, but not in the rivers, except by the admission of the sea. Then, again, almost all particular powers act according to the greater or less quantity of the body. Large masses of water are not easily rendered foul, small are. New wine and beer become ripe and drinkable in small skins much more readily than in large casks. If a herb be placed in a considerable quantity of liquid, infusion takes place rather than impregnation; if in less, the reverse. A bath, therefore, and a light sprinkling, produce different effects on the human body. Light dew, again, never falls, but is dissipated and incorporated with the air; thus we see that in breathing on gems, the slight quantity of moisture, like a small cloud in the air, is immediately dissolved. Again, a piece of the same magnet does not attract so much iron as the whole magnet did. There are some powers where the smallness of the quantity is of more avail; as in boring, a sharp point pierces more readily than a blunt one; the diamond, when pointed, makes an impression on glass, and the like.

Here, too, we must not rest contented with a vague result, but inquire into the exact proportion of quantity requisite for a particular exertion of power; for one would be apt to suppose that the power bears an exact proportion to the quantity; that if a leaden bullet of one ounce, for instance, would fall in a given time, one of two ounces ought to fall twice as rapidly, which is most erroneous. Nor does the same ratio prevail in every kind of power, their difference being considerable. The measure, therefore, must be determined by experiment, and not by probability or conjecture.

Lastly, we must in all our investigations of nature observe what quantity, or dose, of the body is requisite for a given effect, and must at the same time be guarded against estimating it at too much or too little.

XLVIII. In the twenty-fourth rank of prerogative instances we will place wrestling instances, which we are also wont to call instances of predominance. They are such as point out the predominance and submission of powers compared with each other, and which of them is the more energetic and superior, or more weak and inferior. For the motions and effects of bodies are compounded, decomposed, and combined, no less than the bodies themselves. We will exhibit, therefore, the principal kinds of motions or active powers, in order that their comparative strength, and thence a demonstration and definition of the instances in question, may be rendered more clear.

Let the first motion be that of the resistance of matter, which exists in every particle, and completely prevents its annihilation; so that no conflagration, weight, pressure, violence, or length of time can reduce even the smallest portion of matter to nothing, or prevent it from being something, and occupying some space, and delivering itself (whatever straits it be put to), by changing its form or place, or, if that be impossible, remaining as it is; nor can it ever happen that it should either be nothing or nowhere. This motion is designated by the schools (which generally name and define everything by its effects and inconveniences rather than by its inherent cause) by the axiom, that two bodies cannot exist in the same place, or they call it a motion to prevent the penetration of dimensions. It is useless to give examples of this motion, since it exists in every body.

Let the second motion be that which we term the motion of connection, by which bodies do not allow themselves to be separated at any point from the contact of another body, delighting, as it were, in the mutual connection and contact. This is called by the schools a motion to prevent a vacuum. It takes place when water is drawn up by suction or a syringe, the flesh by cupping, or when the water remains without escaping from perforated jars, unless the mouth be opened to admit the air, and innumerable instances of a like nature.

Let the third be that which we term the motion of liberty, by which bodies strive to deliver themselves from any unnatural pressure or tension, and to restore themselves to the dimensions suited to their mass; and of which, also, there are innumerable examples. Thus, we have examples of their escaping from pressure, in the water in swimming, in the air in flying, in the water again in rowing, and in the air in the undulation of the winds, and in springs of watches. An exact instance of the motion of compressed air is seen in children’s popguns, which they make by scooping out elder-branches or some such matter, and forcing in a piece of some pulpy root or the like, at each end; then they force the root or other pellet with a ramrod to the opposite end, from which the lower pellet is emitted and projected with a report, and that before it is touched by the other piece of root or pellet, or by the ramrod. We have examples of their escape from tension, in the motion of the air that remains in glass eggs after suction, in strings, leather, and cloth, which recoil after tension, unless it be long continued. The schools define this by the term of motion from the form of the element; injudiciously enough, since this motion is to be found not only in air, water, or fire, but in every species of solid, as wood, iron, lead, cloth, parchment, etc., each of which has its own proper size, and is with difficulty stretched to any other. Since, however, this motion of liberty is the most obvious of all, and to be seen in an infinite number of cases, it will be as well to distinguish it correctly and clearly; for some most carelessly confound this with the two others of resistance and connection; namely, the freedom from pressure with the former, and that from tension with the latter, as if bodies when compressed yielded or expanded to prevent a penetration of dimensions, and when stretched rebounded and contracted themselves to prevent a vacuum. But if the air, when compressed, could be brought to the density of water, or wood to that of stone, there would be no need of any penetration of dimensions, and yet the compression would be much greater than they actually admit of. So if water could be expanded till it became as rare as air, or stone as rare as wood, there would be no need of a vacuum, and yet the expansion would be much greater than they actually admit of.

 

We do not, therefore, arrive at a penetration of dimensions or a vacuum before the extremes of condensation and rarefaction, while the motion we speak of stops and exerts itself much within them, and is nothing more than a desire of bodies to preserve their specific density (or, if it be preferred, their form), and not to desert them suddenly, but only to change by degrees, and of their own accord. It is, however, much more necessary to intimate to mankind (because many other points depend upon this), that the violent motion which we call mechanical, and Democritus (who, in explaining his primary motions, is to be ranked even below the middling class of philosophers) termed the motion of a blow, is nothing else than this motion of liberty, namely, a tendency to relaxation from compression. For in all simple impulsion or flight through the air, the body is not displaced or moved in space, until its parts are placed in an unnatural state, and compressed by the impelling force. When that takes place, the different parts urging the other in succession, the whole is moved, and that with a rotatory as well as progressive motion, in order that the parts may, by this means also, set themselves at liberty, or more readily submit. Let this suffice for the motion in question.

Let the fourth be that which we term the motion of matter, and which is opposed to the last; for in the motion of liberty, bodies abhor, reject, and avoid, a new size or volume, or any new expansion or contraction (for these different terms have the same meaning), and strive, with all their power, to rebound and resume their former density; on the contrary, in the motion of matter, they are anxious to acquire a new volume or dimension, and attempt it willingly and rapidly, and occasionally by a most vigorous effort, as in the example of gunpowder. The most powerful, or at least most frequent, though not the only instruments of this motion, are heat and cold. For instance, the air, if expanded by tension (as by suction in the glass egg), struggles anxiously to restore itself; but if heat be applied, it strives, on the contrary, to dilate itself, and longs for a larger volume, regularly passing and migrating into it, as into a new form (as it is termed); nor after a certain degree of expansion is it anxious to return, unless it be invited to do so by the application of cold, which is not indeed a return, but a fresh change. So also water, when confined by compression, resists, and wishes to become as it was before, namely, more expanded; but if there happen an intense and continued cold, it changes itself readily, and of its own accord, into the condensed state of ice; and if the cold be long continued, without any intervening warmth (as in grottoes and deep caves), it is changed into crystal or similar matter, and never resumes its form.

Let the fifth be that which we term the motion of continuity. We do not understand by this simple and primary continuity with any other body (for that is the motion of connection), but the continuity of a particular body in itself; for it is most certain that all bodies abhor a solution of continuity, some more and some less, but all partially. In hard bodies (such as steel and glass) the resistance to an interruption of continuity is most powerful and efficacious, while although in liquids it appears to be faint and languid, yet it is not altogether null, but exists in the lowest degree, and shows itself in many experiments, such as bubbles, the round form of drops, the thin threads which drip from roofs, the cohesion of glutinous substances, and the like. It is most conspicuous, however, if an attempt be made to push this separation to still smaller particles. Thus, in mortars, the pestle produces no effect after a certain degree of contusion, water does not penetrate small fissures, and the air itself, notwithstanding its subtilty, does not penetrate the pores of solid vessels at once, but only by long-continued insinuation.

Let the sixth be that which we term the motion of acquisition, or the motion of need.151 It is that by which bodies placed among others of a heterogeneous and, as it were, hostile nature, if they meet with the means or opportunity of avoiding them, and uniting themselves with others of a more analogous nature, even when these latter are not closely allied to them, immediately seize and, as it were, select them, and appear to consider it as something acquired (whence we derive the name), and to have need of these latter bodies. For instance, gold, or any other metal in leaf, does not like the neighborhood of air; if, therefore, they meet with any tangible and thick substance (such as the finger, paper, or the like), they immediately adhere to it, and are not easily torn from it. Paper, too, and cloth, and the like, do not agree with the air, which is inherent and mixed in their pores. They readily, therefore, imbibe water or other liquids, and get rid of the air. Sugar, or a sponge, dipped in water or wine, and though part of it be out of the water or wine, and at some height above it, will yet gradually absorb them.152

Hence an excellent rule is derived for the opening and dissolution of bodies; for (not to mention corrosive and strong waters, which force their way) if a body can be found which is more adapted, suited, and friendly to a given solid, than that with which it is by some necessity united, the given solid immediately opens and dissolves itself to receive the former, and excludes or removes the latter.153 Nor is the effect or power of this motion confined to contact, for the electric energy (of which Gilbert and others after him have told so many fables) is only the energy excited in a body by gentle friction, and which does not endure the air, but prefers some tangible substance if there be any at hand.

Let the seventh be that which we term the motion of greater congregation, by which bodies are borne toward masses of a similar nature, for instance, heavy bodies toward the earth, light to the sphere of heaven. The schools termed this natural motion, by a superficial consideration of it, because produced by no external visible agent, which made them consider it innate in the substances; or perhaps because it does not cease, which is little to be wondered at, since heaven and earth are always present, while the causes and sources of many other motions are sometimes absent and sometimes present. They therefore called this perpetual and proper, because it is never interrupted, but instantly takes place when the others are interrupted, and they called the others adscititious. The former, however, is in reality weak and slow, since it yields, and is inferior to the others as long as they act, unless the mass of the body be great; and although this motion have so filled men’s minds, as almost to have obscured all others, yet they know but little about it, and commit many errors in its estimate.

Let the eighth be that which we term the motion of lesser congregation, by which the homogeneous parts in any body separate themselves from the heterogeneous and unite together, and whole bodies of a similar substance coalesce and tend toward each other, and are sometimes congregated, attracted, and meet, from some distance; thus in milk the cream rises after a certain time, and in wine the dregs and tartar sink; which effects are not to be attributed to gravity and levity only, so as to account for the rising of some parts and the sinking of others, but much more to the desire of the homogeneous bodies to meet and unite. This motion differs from that of need in two points: 1st, because the latter is the stimulus of a malignant and contrary nature, while in this of which we treat (if there be no impediment or restraint), the parts are united by their affinity, although there be no foreign nature to create a struggle; 2dly, because the union is closer and more select. For in the other motion, bodies which have no great affinity unite, if they can but avoid the hostile body, while in this, substances which are connected by a decided kindred resemblance come together and are molded into one. It is a motion existing in all compound bodies, and would be readily seen in each, if it were not confined and checked by the other affections and necessities of bodies which disturb the union.

This motion is usually confined in the three following manners: by the torpor of the bodies; by the power of the predominating body; by external motion. With regard to the first, it is certain that there is more or less sluggishness in tangible bodies, and an abhorrence of locomotion; so that unless excited they prefer remaining contented with their actual state, to placing themselves in a better position. There are three means of breaking through this sluggishness – heat; the active power of a similar body; vivid and powerful motion. With regard to the first, heat is, on this account, defined as that which separates heterogeneous, and draws together homogeneous substances; a definition of the Peripatetics which is justly ridiculed by Gilbert, who says it is as if one were to define man to be that which sows wheat and plants vineyards; being only a definition deduced from effects, and those but partial. But it is still more to be blamed, because those effects, such as they are, are not a peculiar property of heat, but a mere accident (for cold, as we shall afterward show, does the same), arising from the desire of the homogeneous parts to unite; the heat then assists them in breaking through that sluggishness which before restrained their desire. With regard to the assistance derived from the power of a similar body, it is most conspicuous in the magnet when armed with steel, for it excites in the steel a power of adhering to steel, as a homogeneous substance, the power of the magnet breaking through the sluggishness of the steel. With regard to the assistance of motion, it is seen in wooden arrows or points, which penetrate more deeply into wood than if they were tipped with iron, from the similarity of the substance, the swiftness of the motion breaking through the sluggishness of the wood; of which two last experiments we have spoken above in the aphorism on clandestine instances.154

 

The confinement of the motion of lesser congregation, which arises from the power of the predominant body, is shown in the decomposition of blood and urine by cold. For as long as these substances are filled with the active spirit, which regulates and restrains each of their component parts, as the predominant ruler of the whole, the several different parts do not collect themselves separately on account of the check; but as soon as that spirit has evaporated, or has been choked by the cold, then the decomposed parts unite, according to their natural desire. Hence it happens, that all bodies which contain a sharp spirit (as salts and the like), last without decomposition, owing to the permanent and durable power of the predominating and imperious spirit.

The confinement of the motion of lesser congregation, which arises from external motion, is very evident in that agitation of bodies which preserves them from putrefaction. For all putrefaction depends on the congregation of the homogeneous parts, whence, by degrees, there ensues a corruption of the first form (as it is called), and the generation of another. For the decomposition of the original form, which is itself the union of the homogeneous parts, precedes the putrefaction, which prepares the way for the generation of another. This decomposition, if not interrupted, is simple; but if there be various obstacles, putrefactions ensue, which are the rudiments of a new generation. But if (to come to our present point) a frequent agitation be excited by external motion, the motion toward union (which is delicate and gentle, and requires to be free from all external influence) is disturbed, and ceases; which we perceive to be the case in innumerable instances. Thus, the daily agitation or flowing of water prevents putrefaction; winds prevent the air from being pestilent; corn turned about and shaken in granaries continues clean: in short, everything which is externally agitated will with difficulty rot internally.

We must not omit that union of the parts of bodies which is the principal cause of induration and desiccation. When the spirit or moisture, which has evaporated into spirit, has escaped from a porous body (such as wood, bone, parchment, and the like), the thicker parts are drawn together, and united with a greater effort, and induration or desiccation is the consequence; and this we attribute not so much to the motion of connection (in order to prevent a vacuum), as to this motion of friendship and union.

Union from a distance is rare, and yet is to be met with in more instances than are generally observed. We perceive it when one bubble dissolves another, when medicines attract humors from a similarity of substance, when one string moves another in unison with it on different instruments, and the like. We are of opinion that this motion is very prevalent also in animal spirits, but are quite ignorant of the fact. It is, however, conspicuous in the magnet, and magnetized iron. While speaking of the motions of the magnet, we must plainly distinguish them, for there are four distinct powers or effects of the magnet which should not be confounded, although the wonder and astonishment of mankind has classed them together. 1. The attraction of the magnet to the magnet, or of iron to the magnet, or of magnetized iron to iron. 2. Its polarity toward the north and south, and its variation. 3. Its penetration through gold, glass, stone, and all other substances. 4. The communication of power from the mineral to iron, and from iron to iron, without any communication of the substances. Here, however, we only speak of the first. There is also a singular motion of attraction between quicksilver and gold, so that the gold attracts quicksilver even when made use of in ointment; and those who work surrounded by the vapors of quicksilver, are wont to hold a piece of gold in their mouths, to collect the exhalations, which would otherwise attack their heads and bones, and this piece soon grows white.155 Let this suffice for the motion of lesser congregation.

Let the ninth be the magnetic motion, which, although of the nature of that last mentioned, yet, when operating at great distances, and on great masses, deserves a separate inquiry, especially if it neither begin in contact, as most motions of congregation do, nor end by bringing the substances into contact, as all do, but only raise them, and make them swell without any further effect. For if the moon raise the waters, or cause moist substances to swell, or if the starry sphere attract the planets toward their apogees, or the sun confine the planets Mercury and Venus to within a certain distance of his mass;156 these motions do not appear capable of being classed under either of those of congregation, but to be, as it were, intermediately and imperfectly congregative, and thus to form a distinct species.

Let the tenth motion be that of avoidance, or that which is opposed to the motion of lesser congregation, by which bodies, with a kind of antipathy, avoid and disperse, and separate themselves from, or refuse to unite themselves with others of a hostile nature. For although this may sometimes appear to be an accidental motion, necessarily attendant upon that of the lesser congregation, because the homogeneous parts cannot unite, unless the heterogeneous be first removed and excluded, yet it is still to be classed separately,157 and considered as a distinct species, because, in many cases, the desire of avoidance appears to be more marked than that of union.

It is very conspicuous in the excrements of animals, nor less, perhaps, in objects odious to particular senses, especially the smell and taste; for a fetid smell is rejected by the nose, so as to produce a sympathetic motion of expulsion at the mouth of the stomach; a bitter and rough taste is rejected by the palate or throat, so as to produce a sympathetic concussion and shivering of the head. This motion is visible also in other cases. Thus it is observed in some kinds of antiperistasis, as in the middle region of the air, the cold of which appears to be occasioned by the rejection of cold from the regions of the heavenly bodies; and also in the heat and combustion observed in subterranean spots, which appear to be owing to the rejection of heat from the centre of the earth. For heat and cold, when in small quantities, mutually destroy each other, while in larger quantities, like armies equally matched, they remove and eject each other in open conflict. It is said, also that cinnamon and other perfumes retain their odor longer when placed near privies and foul places, because they will not unite and mix with stinks. It is well known that quicksilver, which would otherwise reunite into a complete mass, is prevented from so doing by man’s spittle, pork lard, turpentine and the like, from the little affinity of its parts with those substances, so that when surrounded by them it draws itself back, and its avoidance of these intervening obstacles is greater than its desire of reuniting itself to its homogeneous parts; which is what they term the mortification of quicksilver. Again, the difference in weight of oil and water is not the only reason for their refusing to mix, but it is also owing to the little affinity of the two; for spirits of wine, which are lighter than oil, mix very well with water. A very remarkable instance of the motion in question is seen in nitre, and crude bodies of a like nature, which abhor flame, as may be observed in gunpowder, quicksilver and gold. The avoidance of one pole of the magnet by iron is not (as Gilbert has well observed), strictly speaking, an avoidance, but a conformity, or attraction to a more convenient situation.

Let the eleventh motion be that of assimilation, or self-multiplication, or simple generation, by which latter term we do not mean the simple generation of integral bodies, such as plants or animals, but of homogeneous bodies. By this motion homogeneous bodies convert those which are allied to them, or at least well disposed and prepared, into their own substance and nature. Thus flame multiplies itself over vapors and oily substances and generates fresh flame; the air over water and watery substances multiplies itself and generates fresh air; the vegetable and animal spirit, over the thin particles of a watery or oleaginous spirit contained in its food, multiplies itself and generates fresh spirit; the solid parts of plants and animals, as the leaf, flower, the flesh, bone and the like, each of them assimilate some part of the juices contained in their food, and generate a successive and daily substance. For let none rave with Paracelsus, who (blinded by his distillations) would have it, that nutrition takes place by mere separation, and that the eye, nose, brain and liver lie concealed in bread and meat, the root, leaf and flower, in the juice of the earth; asserting that just as the artist brings out a leaf, flower, eye, nose, hand, foot and the like, from a rude mass of stone or wood by the separation and rejection of what is superfluous; so the great artist within us brings out our several limbs and parts by separation and rejection. But to leave such trifling, it is most certain that all the parts of vegetables and animals, as well the homogeneous as organic, first of all attract those juices contained in their food, which are nearly common, or at least not very different, and then assimilate and convert them into their own nature. Nor does this assimilation, or simple generation, take place in animated bodies only, but the inanimate also participate in the same property (as we have observed of flame and air), and that languid spirit, which is contained in every tangible animated substance, is perpetually working upon the coarser parts, and converting them into spirit, which afterward is exhaled, whence ensues a diminution of weight, and a desiccation of which we have spoken elsewhere.158

Nor should we, in speaking of assimilation, neglect to mention the accretion which is usually distinguished from aliment, and which is observed when mud grows into a mass between stones, and is converted into a stony substance, and the scaly substance round the teeth is converted into one no less hard than the teeth themselves; for we are of opinion that there exists in all bodies a desire of assimilation, as well as of uniting with homogeneous masses. Each of these powers, however, is confined, although in different manners, and should be diligently investigated, because they are connected with the revival of old age. Lastly, it is worthy of observation, that in the nine preceding motions, bodies appear to aim at the mere preservation of their nature, while in this they attempt its propagation.

Let the twelfth motion be that of excitement, which appears to be a species of the last, and is sometimes mentioned by us under that name. It is, like that, a diffusive, communicative, transitive and multiplying motion; and they agree remarkably in their effect, although they differ in their mode of action, and in their subject matter. The former proceeds imperiously and with authority; it orders and compels the assimilated to be converted and changed into the assimilating body. The latter proceeds by art, insinuation and stealth, inviting and disposing the excited toward the nature of the exciting body. The former both multiplies and transforms bodies and substances; thus a greater quantity of flame, air, spirit and flesh is formed; but in the latter, the powers only are multiplied and changed, and heat, the magnetic power, and putrefaction, in the above instances, are increased. Heat does not diffuse itself when heating other bodies by any communication of the original heat, but only by exciting the parts of the heated body to that motion which is the form of heat, and of which we spoke in the first vintage of the nature of heat. Heat, therefore, is excited much less rapidly and readily in stone or metal than in air, on account of the inaptitude and sluggishness of those bodies in acquiring that motion, so that it is probable, that there may be some substances, toward the centre of the earth, quite incapable of being heated, on account of their density, which may deprive them of the spirit by which the motion of excitement is usually commenced. Thus also the magnet creates in the iron a new disposition of its parts, and a conformable motion, without losing any of its virtue. So the leaven of bread, yeast, rennet and some poisons, excite and invite successive and continued motion in dough, beer, cheese or the human body; not so much from the power of the exciting, as the predisposition and yielding of the excited body.

150The experiments of the last two classes of instances are considered only in relation to practice, and Bacon does not so much as mention their infinitely greater importance in the theoretical part of induction. The important law of gravitation in physical astronomy could never have been demonstrated but by such observations and experiments as assigned accurate geometrical measures to the quantities compared. It was necessary to determine with precision the demi-diameter of the earth, the velocity of falling bodies at its surface, the distance of the moon, and the speed with which she describes her orbit, before the relation could be discovered between the force which draws a stone to the ground and that which retains the moon in her sphere. In many cases the result of a number of particular facts, or the collective instances rising out of them, can only be discovered by geometry, which so far becomes necessary to complete the work of induction. For instance, in the case of optics, when light passes from one transparent medium to another, it is refracted, and the angle which the ray of incidence makes with the superficies which bounds the two media determines that which the refracted ray makes with the same superficies. Now, all experiment can do for us in this case is, to determine for any particular angle of incidence the corresponding angle of refraction. But with respect to the general rule which in every possible case deduces one of these angles from the other, or expresses the constant and invariable relation which subsists between them, experiment gives no direct information. Geometry must, consequently, be called in, which, when a constant though unknown relation subsists between two angles, or two variable qualities of any kind, and when an indefinite number of values of those quantities are assigned, furnishes infallible means of discovering that unknown relation either accurately or by approximation. In this way it has been found, when the two media remain the same, the cosines of the above-mentioned angles have a constant ratio to each other. Hence, when the relations of the simple elements of phenomena are discovered to afford a general rule which will apply to any concrete case, the deductive method must be applied, and the elementary principles made through its agency to account for the laws of their more complex combinations. The reflection and refraction of light by the rain falling from a cloud opposite to the sun was thought, even before Newton’s day, to contain the form of the rainbow. This philosopher transformed a probable conjecture into a certain fact when he deduced from the known laws of reflection and refraction the breadth of the colored arch, the diameter of the circle of which it is a part, and the relation of the latter to the place of the spectator and the sun. Doubt was at once silenced when there came out of his calculus a combination of the same laws of the simple elements of optics answering to the phenomena in nature. —Ed.
151As far as this motion results from attraction and repulsion, it is only a simple consequence of the last two. —Ed.
152These two cases are now resolved into the property of the capillary tubes and present only another feature of the law of attraction. —Ed.
153This is one of the most useful practical methods in chemistry at the present day.
154See .
155Query?
156Observe this approximation to Newton’s theory.
157Those differences which are generated by the masses and respective distances of bodies are only differences of quantity, and not specific; consequently those three classes are only one. —Ed.
158See the citing instances, .