Digitalisierung verstehen

Tekst
Loe katkendit
Märgi loetuks
Kuidas lugeda raamatut pärast ostmist
Šrift:Väiksem АаSuurem Aa

KAPITEL 1
DIGITALER WANDEL
Die Instrumente der Digitalisierung

Digitalisierung ohne Wenn und Aber

Wir befinden uns inmitten des technologischen Wandels „Digitalisierung“, dessen Entwicklung weder absehbar noch vorhersehbar ist. Die einzige Konstante dieser Reise ins Ungewisse, die sich heute prognostizieren lässt: Sie wird unsere Gesellschaft fundamental verändern.

Ein Wandel, den die seit mehr als 200 Jahren erscheinende Enzyklopädie „Brockhaus“ in ihrem Nachschlagewerk folgendermaßen definiert: „Digitalisierung: im ursprünglichen Sinn die Umwandlung analoger Signale in digitale Daten, die mit einem Computer weiterverarbeitet werden können, in einem weiteren Sinn der Prozess einer alle Lebensbereiche umfassenden Transformation hin zu einem Dasein, das von digitalen Daten bestimmt wird“.

Grob vereinfacht heißt das: Informationen werden in Zahlen des binären oder dualen Systems mit 0 und 1 als Einheiten abgebildet und gespeichert. Das war alles, was man uns über Digitalisierung erzählt hat. So inflationär der Begriff Digitalisierung derzeit gebraucht wird, so präzise kann man feststellen, dass sich dessen Wahrnehmung innerhalb der Bevölkerung in der jüngsten Zeit verändert hat: Es wird etwas geschehen, auch wenn dieses „Etwas“ noch unklar ist.

Technologischer Fortschritt: Voraussetzung zeitgemäßen Lebens

Das Zeitalter der Digitalisierung könnte die Menschheit vor die größte Herausforderung in ihrer Geschichte stellen, die sie jemals zu bewältigen hatte. Wer sich dem digitalen Wandel verweigert, verweigert sich der Zukunft. Aufhalten lässt sich diese rasante technologische Entwicklung nicht, also müssen wir uns ihr stellen. Technische Innovationen verändern unseren Alltag, da sie den sozialen Anforderungen unserer Gesellschaft folgen. Und ehe wir es uns versehen, sind sie bereits unverzichtbarer Bestandteil unseres Privat- wie Berufslebens.

Alexa weiß, welcher Fußballverein den Aufstieg in die Bundesliga geschafft hat, Siri sagt uns, ob wir einen Regenschutz einpacken sollen, Cortana liest die Nachrichten vor und OK Google berechnet per Sprachaufforderung die schnellste Fahrtroute zu unserem Businesstermin. Aus dem Auto schließlich melden wir uns noch „hands-free“ bei einem Geschäftskunden und um es nicht zu vergessen, stellen wir gleich nebenher den Thermostat der Heizung für den Abend ein. Auch entspannende Berieselung durch die Stereoanlage wäre fein und die richtige Beleuchtung lässt sich obendrein gleich mitprogrammieren. Das alles funktioniert über Sprachsteuerung, also ohne die Hände vom Lenkrad zu nehmen.

Technische Entwicklungen bedürfen entsprechender Vorlaufzeiten und das, was gestern noch unvorstellbar war, ist heute gebräuchlich und morgen bereits veraltet. Digitale Errungenschaften fallen also keineswegs unvermittelt vom Himmel, sondern sind in der kollektiven Wahrnehmung oft lange vor dem tatsächlichen Eintreten erkennbar. Bereits 1927 hat Fritz Lang mit seinem bedrückenden Stummfilm-Klassiker „Metropolis“ seine Vision der Abhängigkeit der Menschen von der Maschine skizziert, deren Ängste und Sorgen bis heute nichts an ihrer Aktualität eingebüßt haben.

Die Zeit der Digitalisierung steht erst am Anfang. Einen wesentlichen Schub in die digitale Epoche brachte das Coronavirus SARS-CoV-2, das die Lebensgewohnheiten der Menschen von heute auf morgen umkrempelte. Personen, die technologische Hilfsmittel nach Möglichkeit verweigerten, waren plötzlich angewiesen auf solche. Das begann beim kontaktlosen Bezahlen im Supermarkt und erschöpfte sich mit Homeschooling oder Homeoffice noch lange nicht. Plötzlich reichte es nicht mehr, ein PDF herumzuschicken. Defizite haben auch Schulbuchverlage, die digital am letzten Stand sind, es aber seit Jahren nicht schaffen, die Bildungsinhalte zu digitalisieren. Im Endeffekt ein großes Do-it-yourself, an dem sich Lehrer, Schüler und Eltern beteiligen mussten.

Corona änderte das digitale Nutzungsverhalten der Menschen schlagartig und dass die überwiegende Mehrheit diese Gewohnheiten auch in nachpandemischen Zeiten beibehält, ist wahrscheinlich.

Die globale Verbreitung digitaler Netzwerke gehört zu den radikalsten Veränderungen in unserer Gesellschaft. Dass es sich dabei nicht ausschließlich um Technologie handelt, sondern vielmehr um die Akzeptanz von anderen Möglichkeiten, hat uns die Pandemie sehr drastisch vor Augen geführt.

Innovationen lenken unsere Entwicklung

Die Entwicklung der Automatisierung zieht sich über zweieinhalb Jahrhunderte, denn nichts ist auch hierbei stetiger als der Wandel. Die Industrie 4.0 wäre ohne die einzelnen Entwicklungsstufen ihrer Vorgänger-Revolutionen undenkbar. Dabei waren die einzelnen industriellen Strömungen geprägt von gesellschaftlichen und wirtschaftlichen Erfordernissen, die sich durch die jeweils vorhandenen Ressourcen ergaben. Die Produktion mittels Maschinen zu mechanisieren – heute als erste industrielle Revolution bezeichnet – entwickelte sich Mitte des 18. Jahrhunderts in der britischen Textilindustrie, wo mechanische Webstühle errichtet wurden, betrieben durch Wasser- und Dampfkraft. Wasserkraft war der erste Energieträger, der auch den Verkehr revolutionierte und zu den ersten Erfolgen der frühen Industrialisierung führte.

Ausgangspunkt für die zweite industrielle Revolution zu Ende des 19. Jahrhunderts war die Einführung der Elektrizität als Antriebskraft, um die Massenproduktion zu ermöglichen. Auf den Fließbändern in den Werkhallen der Fabriksgebäude zu Beginn des frühen 20. Jahrhunderts konnte bereits in Akkord produziert werden, weil leistungsfähige Motoren die menschliche Arbeit durch Automatisierung ersetzten.

Errungenschaften in der Kommunikation, wie Telegramm und Telefon, sowie die ersten Schreibmaschinen beschleunigten ebenso die Arbeitsprozesse und sorgten für das Aufkommen von Büroarbeitsplätzen. In dieser Epoche wurden wohl auch die ersten Schritte in Richtung Globalisierung gesetzt: durch die automatisierte Verarbeitung von Rohstoffen, Lebensmitteln und Kleidung sowie den grenzüberschreitenden Warenhandel durch Mobilität als Folge der Entdeckung von Erdöl und der Erfindung des Verbrennungsmotors. Erstmals in der Geschichte konnten durch Luftfahrt oder mittels Dampfschiffen Weltmeere zum Zweck des Warentransports überquert werden.

Auch die Grundlagen für die dritte industrielle Revolution, der Informationstechnologie, sind hier zu finden: Die erste „Programmiererin“, die britische Mathematikerin Ada Lovelace, veröffentlichte 1843 einen umfangreichen Kommentar zur Programmierung für einen – zwar niemals realisierten – mechanischen Computer. Die wesentlichen Eigenschaften späterer Programmiersprachen, wie Unterprogramm oder Verzweigung, nahm sie damit bereits vorweg.

Die Wurzeln der dritten industriellen Entwicklungsstufe reichen bis in die Mitte des vergangenen Jahrhunderts, belegt durch den ersten funktionsfähigen Computer der Welt. Den legendären Z3 entwickelte der deutsche Bauingenieur Konrad Ernst Otto Zuse im Jahr 1941. Dieser Computer war programmgesteuert, frei programmierbar und vollautomatisch.

Die dritte industrielle Revolution, in den 1970er-Jahren begründet, machte sich Elektronik und Informationstechnologie zunutze, um die Produktion zu automatisieren. Nachdem die ersten Rechenmaschinen in der Industrie Einzug hielten, schufen Personal Computer für Büro und Haushalt einen neuen Industriezweig. Elektronik, Informationstechnik sowie produktive Roboter ermöglichten eine höhere Automatisation von Produktion, Montage und Logistikprozessen.

Die vierte industrielle Revolution

Mechanisierung, Elektrifizierung und Automatisierung verdanken wir den ersten drei industriellen Revolutionen. Die digitale Revolution mit ihrer technologischen Komponente ist im Gegensatz zu den drei vorangegangenen zweifelsfrei die einschneidendste: Erstmals auf diesem Planeten wird nicht mehr lediglich das äußere Umfeld des Menschen verändert, sondern mithilfe von Biotechnologie und künstlicher Intelligenz der Mensch selbst an Körper und Geist optimiert. Die mit „Upgrades“ versehenen, modifizierten Gehirne der Bevölkerung könnten Supermenschen hervorbringen, die mit unserer Spezies Mensch bald nicht mehr viel gemein haben. Diese neue Generation des Homo sapiens würde imstande sein, in zwei, drei Generationen mit völlig neuen Fähigkeiten, Bedürfnissen und Gewohnheiten auch ihre Lebenswelt komplett zu verändern.

Der Beginn des „digitalen Zeitalters“ wird häufig auf das Jahr 2002 datiert, da angenommen wird, dass es in diesem Jahr der Menschheit erstmals möglich war, mehr Information digital als analog zu speichern.2

Die Ära der Digitalisierung baut zwar auf dem Wissen der dritten industriellen Revolution auf, doch sein wesentliches Merkmal ist die Verschmelzung von Technologien. „Es gibt drei Gründe, warum es sich bei der heutigen Transformation nicht nur um eine Verlängerung der dritten industriellen Revolution handelt, sondern sich eher eine Vierte, anders Geartete abzeichnet: Schnelligkeit, Reichweite und systemische Wirkung. Die Schnelligkeit, mit der derzeit Durchbrüche erzielt werden, wurde noch nie erreicht“, erläutert der Chef des Weltwirtschaftsforums Klaus Schwab im Handelsblatt.3 „Im Vergleich zu vorherigen industriellen Revolutionen, entwickelt sich die Vierte exponentiell und nicht in linearem Tempo. Sie wirbelt fast jeden Industriezweig in allen Ländern durcheinander. Und die Breite sowie die Tiefe dieser Veränderungen kündigen die Erschaffung ganz neuer Systeme an, was Produktion, Management und Governance einbezieht.“

Die Ära der digitalen Automatisierung, häufig Industrie 4.0 genannt, soll es ermöglichen, die Massenproduktion zu individualisieren, neue Geschäfts- und Beschäftigungsmodelle zu schaffen sowie durch intelligente Prozesse zu neuen Wertschöpfungsketten zu gelangen. Die Daten sind der Rohstoff, das Internet sein Trägermedium und erst durch die Vernetzung digitaler Technologie wird es möglich werden, den Übergang vom Industriezeitalter in eine Informations- und Wissensgesellschaft zu erreichen.

 

Der Prozess technologischer Innovationen war der stärkste Wohlstandstreiber der Geschichte, der das Gemeinwohl der Menschheit gesteigert hat. Seit Beginn der ersten industriellen Revolution ist das durchschnittliche Realeinkommen pro Person in OECD-Ländern um rund 2.900 Prozent gestiegen.4 In diesem Zeitraum hat sich auch die Lebenserwartung mehr als verdoppelt, im Vereinigten Königreich von 40 auf über 80 Jahre und in Indien von 23,5 auf derzeit 65 Jahre.

Dennoch wird das neue Technologiezeitalter gefordert sein, die aktuellen Probleme der Menschheit, die auf den vorangegangenen drei industriellen Revolutionen fußen, zu lösen: die Stagnation bzw. das Absinken des Medians von Löhnen und Gehältern in den Industrieländern zu verhindern – und in den Entwicklungsländern das Wirtschaftswachstum nachhaltig anzukurbeln, da dort fast jeder Zehnte in extremer Armut lebt, ohne Aussicht auf eine nachhaltige Verbesserung seines Lebensstandards.

Industrie 4.0: Die Vernetzung von Maschinen (IIoT)

Mit der Digitalisierung der Produktion, also der Industrie 4.0, ist es möglich, sowohl effizienter als auch individueller Werkstücke zu erzeugen. Zwei Entwicklungen machen das Wesen der Industrie 4.0 aus: Vernetzung und Selbststeuerung. Das Vernetzen von Maschinen, sogenannte Machine-to-Machine (M2M)-Systeme, ermöglicht es, Daten und damit Informationen auszutauschen und somit intelligent aufeinander zu reagieren. Selbststeuerung bedeutet, dass die Maschinen – im Gegensatz zur bisherigen Zentralsteuerung durch den Menschen – dabei selbst untereinander kommunizieren. Das ist ihnen aber auch mit anderen Systemen, wie Produktion, Vertrieb, Entwicklung bis einschließlich Kunden und Lieferanten, möglich. Realisiert wird das durch Sensoren, die an den einzelnen Objekten angebracht sind. Solche Sensoren sind Messgeräte, die physikalische Größen erfassen und in elektrische Signale umwandeln. Diese Technologie wird als Industrial Internet of Things (IIoT) bezeichnet und gewährleistet die vernetzte Kommunikation über das Internet. Voraussetzung dafür ist ein leistungsfähiger Mobilfunkstandard, wie er derzeit mit 5G eingeführt wird. Die Idee des IIoT basiert auf der künstlichen Intelligenz, die Big-Data-Technologien integriert, um die Effektivität von Unternehmen beträchtlich zu steigern. Aber: Ungewollte, unvermeidliche Unterbrechungen der Logistikprozesse bzw. Lieferketten, z. B. infolge von Pandemien, haben umso dramatischere Auswirkungen.

Diese dezentrale Selbstoptimierung soll in der Folge zur sogenannten Smart Factory führen, wo Maschinen und Roboter selbstständig entscheiden, welches Bauteil welchen Weg durch die Produktion nimmt. Diese Automatisierung von Fabriken verschlankt Logistikprozesse innerhalb eines Unternehmens ebenso wie den gesamten Prozess kompletter Lieferketten. So weiß jede Maschine, wie viele Bauteile noch im Lager sind, und kann automatisch eine Bestellung zum Lieferanten senden, der für Nachschub sorgt. Ähnlich dem Warenbestand lassen sich auch Produktionsabläufe planen. Sollte sich ein Autokäufer in letzter Sekunde doch noch für ein Dachfenster entscheiden, plant die Produktion automatisch einen anderen Weg für die Fertigung dieses Fahrzeugs ein.

Um komplexe Prozesse von realen Maschinen zu simulieren, werden in der Industrie digitale Zwillinge eingesetzt. „Ein digitaler Zwilling ist grundsätzlich eine virtuelle Echtzeitabbildung der Struktur und des Verhaltens eines physischen Gegenstandes. Er begleitet und assistiert eine Anlage über deren gesamten Lebenszyklus – vom ersten Entwurf, über Konstruktion und Fertigung bis hin zur Wartung und Recycling. Ein derartiger Zwilling interagiert zu jedem Zeitpunkt mit seinem physischen Gegenstück und liefert wertvolle Daten über den Status und Zustand der Anlage.“5

Der Nutzen für die Industrie besteht in der Einsparung physischer Prototypen sowie der Gelegenheit, Verhalten, Funktionalität und Qualität des realen Zwillings unter jedem relevanten Aspekt zu simulieren. Dieser Wert kann für alle Teile der Wertschöpfung über den gesamten Lebenszyklus von Produkten, Anlagen und Dienstleistungen genutzt werden. Digitale Zwillinge gibt es für Produkte, Produktionsanlagen, Prozesse und Dienstleistungen aller Branchen. Als Designmodell für ein künftiges Produkt kann ein digitaler Zwilling bereits vor seinem realen Pendant existieren.

3-D-Druck: Das Ende der Massenproduktion

Als Schlüsseltechnologie kann die „additive Fertigung“, auch unter dem gängigen Namen 3-D-Druck bekannt, in der industriellen Fertigung neben Prototypen- und Kleinserienbau auch Unikate bis Losgröße 1 schnell und kostengünstig produzieren. Bei den großen Automobilherstellern in Deutschland ist die Verwendung von Prototypen aus 3-D-Drucktechnologie bereits Praxis, hat es doch den Vorteil, die Bauteile selbst ausdrucken zu können, um Zeit und Kosten durch Bestellen und Liefern von Automobilteilen einzusparen.

3-D-Druck erlaubt es, dreidimensionale Gegenstände Schicht für Schicht aus flüssigen oder festen Werkstoffen wie Pulver, Kunststoff oder Metall zu fertigen. Mit fallenden Kosten und höherer Produktivität von 3-D-Druckern könnte diese Technologie viele herkömmliche Fertigungsprozesse ersetzen. Vollkommen neue Produkte könnten dadurch entstehen und damit neue Marktchancen für Unternehmen eröffnen.

In der österreichischen Sachgütererzeugung wenden bereits 22 Prozent aller Firmen mit 20 oder mehr Beschäftigten 3-D-Druck an. „Große Unternehmen verwenden die Technologie noch deutlich häufiger als kleinere“, weiß Bernhard Dachs, Senior Scientist am AIT Center for Innovation Systems & Policy. „Mit steigernder Leistungsfähigkeit wird sich die Technologie auch bei kleineren Unternehmen verbreiten.“

Auch wenn das künftige Leistungsvermögen von 3-D-Druck vielfältig ist, beschränkt sich der konkrete Einsatz derzeit noch auf ausgewählte Bereiche. Am häufigsten wird 3-D-Druck in der Elektro- und Elektronikindustrie und im Fahrzeug- und Maschinenbau eingesetzt, während in den Sektoren Nahrungsmittel, Holz und Papier oder Chemie nur vergleichsweise wenige Firmen 3-D-Druck einsetzen. Derzeit verwenden deutlich mehr Firmen 3-D-Druck für die Erzeugung von Prototypen als für die Serienfertigung.

3-D-Drucker werden immer günstiger, sodass diese Technologie nicht nur für Unternehmen, sondern auch für Private interessant wird. Was jetzt noch als Spielerei abgetan wird, könnte in den nächsten Jahren zur echten Alternative von industriellen Standardprodukten werden. Passendes Werkzeug samt entsprechendem Werkzeugkasten, Kabelbinder, Besteck, Trinkflaschenhalterung und Flaschenöffner, Zahnbürsten-Etui und vieles mehr – alles sogar in der absoluten Wunschfarbe selbst ausgedruckt – ist bereits machbar. Die individuelle Produktion als Endziel dieser additiven Drucktechnologie schafft neue Dimensionen. Der Vorteil von 3-D-Druckern ist, dass sie nach dem tatsächlichen Bedarf produzieren. Es wird auch in Zukunft nicht alles aus dem 3-D-Drucker kommen, weil individuelle Teile auf lange Zeit teurer sein werden als solche aus der Massenfertigung. Für Spezialanforderungen und individuelle Wünsche wird die 3-D-Drucktechnologie wohl aber auch im Privatbereich eine ernst zu nehmende Alternative sein.

Die zukunftsweisenden Möglichkeiten der 3-D-Technologie sind noch lange nicht ausgeschöpft. Ersichtlich ist das an den Fortschritten im Bioprinting von organischem Gewebe, wie in der Medizin, in der synthetischen Biologie oder in der Lebensmittelindustrie, wo 3-D-Drucker eingesetzt werden sollen, um in Zukunft ganze Organe oder künstliches Fleisch herzustellen. Auch der im frühen Entwicklungsstadium befindliche 4-D-Druck wird die Zukunft der Fertigung revolutionieren. Beim 4-D-Druck kommt zur Dreidimensionalität eine vierte Dimension – die Zeit – hinzu, in der sich die Objekte nach der Fertigung durch einen Impuls von außen, z. B. Licht, Wasser, Elektrizität, Chemikalien oder Hitze, verändern.

Jalousien könnten auf diese Weise unsichtbar in ein Fenster integriert eigenständig arbeiten und auch ein T-Shirt – dank der additiven Fertigung perfekt an den Körper angepasst –, das wärmt, wenn es kalt ist, und Luft durchlässt, wenn man schwitzt, ist denkbar. Darüber hinaus hat 4-D-Druck großes Potenzial in der Medizin. Organe und Knochen, die mit dem menschlichen Körper mitwachsen, sind keine Zukunftsmusik mehr und damit verbunden auch die Wartezeiten von Organspenden.

Was ist digitale Technik?

Technik steht in unserer aufgeklärten, rationellen, nüchternen westlichen Hemisphäre für Wachstum, Fortschritt und Wohlstand. Digitaltechnik ist ein Teilgebiet der technischen Informatik und Fundament unserer technisch orientierten Zivilisation. Wir verwenden digitale Technik als Grundlage aller Informations- und Kommunikationswege, derer wir uns heute bedienen – ausgenommen des persönlichen Gesprächs oder geschriebenen Briefs. Nicht nur das private Leben wird digital gesteuert, längst hat diese moderne Datentechnik in allen Bereichen des öffentlichen Lebens, der Wirtschaft und Wissenschaft Platz gegriffen. Produktion, Sicherheit, Gesundheit, Mobilität und Medien wären ohne digitale Technik undenkbar. Schlüsseltechnologien sind u. a. Big Data, Cloud Computing, WLAN-Tech-nologie, Blockchain, Software Engineering, Systems Engineering, Machine Learning.

Die Vorteile sind überzeugend, die Möglichkeiten zu deren Einsatz gigantisch und der Nutzen augenscheinlich. Die Zuverlässigkeit wird für die geforderte Sicherheit sorgen, die bestimmend sein wird, wie grenzenlos wir uns dem digitalen Netz anvertrauen werden. Seit den 1990er-Jahren geben in der Telekommunikation die digitalen Technologien den Ton an: Waren es im Jahr 1993 erst 3 Prozent, wuchs der Einfluss digitaler Technologien auf österreichische Mittelstandsunternehmen laut Statista auf stattliche 88 Prozent an.6

Blockchain: Digitale Kette unveränderbarer Daten

Fraglos ist die Blockchain-Technologie eine der fundamentalen Errungenschaften in der digitalen Entwicklung, auch wenn sie im Zusammenhang mit den anfänglichen Ungereimtheiten der Kryptowährung Bitcoin in Misskredit geraten ist. Die Beschaffenheit dieses dezentralen Netzwerks ermöglicht es jedem daran Beteiligten, zeitgleich an dieselben digitalen Informationen zu gelangen und diese zu verteilen, ohne sie kopieren zu müssen. Lag ihr Ursprung in der Finanzdienstleistungsbranche, hält die Blockchain bereits Einzug in andere Dienstleistungsbereiche. Zum Einsatz kommt sie derzeit u.a. bei Verträgen und Geldtransaktionen, im Versicherungswesen, im Gesundheitswesen bei Systemen für medizinische Informationen, wie z. B. der Elektronischen Gesundheitsakte, der Gesetzgebung sowie der elektronischen Stimmabgabe, geheimen militärischen Informationen, dem Sicherheitsmanagement kritischer Anlagen oder Daten von Großunternehmen. In Schweden und Georgien sind Pilotprojekte zur Grundbuchverwaltung mittels Blockchain im Gange und Wien Energie vereinfacht damit bereits den Stromhandel in einem Test-Grätzel.

Eine Blockchain – eine Kette von Blöcken – ist eine beliebig erweiterbare Liste von Datensätzen, also „Blöcken“, die mittels kryptografischer Verfahren miteinander verkettet sind. Charakteristisch ist, dass jeder Block den sicheren Hash (verschlüsselter und eindeutiger Code) des vorhergehenden Blocks enthält7 und mit einem Zeitstempel sowie Transaktionsdaten ausgestattet ist.8

Blockchain-Technologie erspart in allen Anwendungsbereichen Zeit und Kosten. Da die Informationen, die auf einer Blockchain gespeichert sind, gemeinsam genutzt sowie kontinuierlich abgeglichen werden, sorgt diese Form der Datenbank für höchste Transparenz und schafft so Vertrauen.

Die Aufzeichnungen sind öffentlich, damit auch nachprüfbar und jeder Internetnutzer kann zeitgleich darauf zugreifen, da die Daten von Millionen Computern parallel gehostet werden. Es existiert daher keine zentralisierte Version dieser Informationen, die von einem Hacker manipuliert werden könnte. Nachteil dieser Technologie ist sein enormer Stromverbrauch und die damit einhergehende CO2-Belastung der Umwelt.

 

Technologien der Zukunft

Digitale Technologie lebt von Daten. Die Forschung arbeitet daran, die Kapazitäten in der Datenverarbeitung zu vergrößern sowie die Speicherung, Manipulation und Kommunikation von Informationen zu erweitern. Die aktuellen Herausforderungen am Beginn des digitalen Zeitalters bestehen aus der Weiterentwicklung von Datenverarbeitungstechnologien, Systemen, die auf Grundlage von Blockchain und verteiltem Hauptbuch basieren, einem sich rasant entwickelnden Internet der Dinge (IoT) sowie Quantencomputern und eingebetteten IKT-Systemen.

Die technische Entwicklung der Komplexität, die Steigerung der Integrationsdichte, also die Anzahl an Transistoren pro Flächeneinheit, bildet eine wesentliche Grundlage der „digitalen Revolution“. Der empirische Grundsatz des nach dem Intel-Mitbegründer Gordon Moore benannten Mooreschen Gesetzes von 1965, wonach sich die Zahl der Transistoren pro Quadratzoll etwa alle zwei Jahre verdoppelt, könnte durch die neuen Quantencomputer seine Gültigkeit verlieren, da ein solcher die physikalischen Grundlagen der Computertechnik revolutioniert, um mit gigantischer Rechenleistung die umfangreichsten und komplexesten Aufgaben der Welt zu lösen.

Ohne Moore’sches Gesetz gäbe es keinen Mobilfunk, wo die Chips auf sehr kleinen und schnellen mobilen Rechnern Platz finden müssen, was auch die Kosten pro Jahr um rund 30 Prozent verringert.9 Geringe Kosten sowie die bemerkenswerte Geschwindigkeit der Rechner schaffen Innovationen und Produktivitätssteigerungen in Unternehmen – umso mehr, da die Nachfrage nach Smartphones im Privatbereich weltweit ungebrochen ist. Laut Untersuchungen des Marktforschungsunternehmens Pew Research Center in Washington, D.C. besitzen weltweit rund fünf Milliarden Menschen ein Mobiltelefon und 3,5 Milliarden ein Smartphone.

Die Verkleinerung der Transistoren stößt zunehmend an ihre physikalischen Grenzen, wie Werkstoffwissenschaftler und Chiperzeuger seit Jahren betonen. Die Steigerung der Taktfrequenz sowie die Senkung des Stromverbrauchs von Transistoren sind bereits seit rund zehn Jahren überholt, zudem sind Transistoren schon jetzt kleiner als Viren.

Bevor jedoch die physikalischen Grenzen das Moore’sche Gesetz vollends außer Kraft setzen, könnte es eine Gesetzmäßigkeit von Arthur Rock ablösen. Sie besagt, dass sich die Kosten für die Investitionsausrüstung zum Bau von Halbleiterprodukten alle vier Jahre verdoppeln werden.10 Diese beachtlichen Kostensteigerungen zur Herstellung immer leistungsfähigerer, kleinerer Chips erklärt Rock damit, dass dafür immer präzisere Gerätschaften mit immer geringeren Fehlerquoten eingesetzt werden müssten. Die höheren Kosten dieser Entwicklung bedingen laut Peter J. Denning und Ted G. Lewis, dass sich damit für jede neue Chip-Generation die Größe des bisherigen Marktes mindestens verdoppeln muss, damit sich die neuen Fabrikationsanlagen rentieren.11

Der Markt hat noch Potenzial: In den Industrieländern ist bei der älteren Generation ein Aufholen beim Gebrauch von Smartphones zu bemerken und auch in den Entwicklungsländern nimmt die Verwendung zu. Rund 3,5 Milliarden Menschen nutzen derzeit weltweit ein Smartphone.

Quantenüberlegenheit oder Apokalypse

Je kleiner die Einheiten, desto schwieriger die Verarbeitung der Daten mit herkömmlichen Rechnern. Im Mikrokosmos verändert sich durch die Annäherung an atomare Größen und deren Bausteine auch der Zustand von Materie. Ein Atom kann sich an mehreren Orten gleichzeitig aufhalten und ein Elektron kann Welle und Teilchen zugleich darstellen. Diese Erkenntnis, die wir Niels Bohr, Erwin Schrödinger, Werner Heisenberg und Albert Einstein zu verdanken haben, als sie das Wesen der Atome, der kleinsten Teile unserer Materie, beschrieben und vorhersagten, ist rund 100 Jahre alt. Darüber hinaus sind die Eigenschaften der Teilchen auch nicht eindeutig festgelegt. Diesen Umstand werden sich in Zukunft „Quantencomputer“ zunutze machen, die wie klassische Computer Algorithmen ausführen und mit Zahlen rechnen, aber auch imstande sein werden, die schwierigsten Aufgaben – wie beispielsweise chemische Berechnungen – zu lösen.

Sind bei klassischen Computern Bits die kleinste Informationseinheit, kommen beim Quantencomputer Qubits zur Anwendung, deren klar definierte Zustände von „0“ und „1“ nicht mehr nur „entweder-oder“ bedeuten, sondern durch die Möglichkeit der Überlagerung von zwei Zuständen außerdem „sowohl als auch“ heißen können.

Der österreichische Quantenphysik-Professor Peter Zoller spielt mit seinem Innsbrucker Universitäts-Spin-off „Alpine Quantum Technologies“ in der ersten Liga der Forschung und will bis 2022 einen Quantencomputer zur Marktreife bringen. „Quantencomputing wird aber zunächst weniger der Verkauf von Hardware sein, sondern Computer über eine Quanten-Cloud zur Verfügung zu stellen. Von außen wählt man sich in eine Quantenmaschine ein, die rechnet. Das ist der Markt, der entstehen wird.“12

Google, IBM, Microsoft, China, die EU, zahlreiche Geheimdienste und wohl noch einige andere arbeiten seit 20 Jahren fieberhaft an der Entwicklung von Quantencomputern. „Ein Quantencomputer, der eine Aufgabe bewältigt, die selbst für die größten herkömmlichen Supercomputer praktisch unlösbar ist“, wie der Physiker John Preskill 2012 das Kriterium der Quantenüberlegenheit definierte. Wenn Quantencomputer dennoch nicht imstande sein werden, alle digitalen Probleme dieser Welt zu lösen, können sie mit Sicherheit ein großes Problem verursachen: durch die enorme Zahl von Qubits können sie fast alle heute gängigen Verschlüsselungsalgorithmen knacken, die eine relativ sichere Kommunikation im Internet garantieren.

Algorithmen geben uns den Takt vor

Algorithmen sind allgegenwärtig. Sie haben sich so gut wie in alle Bereiche unseres modernen Alltags eingenistet, meist sogar, ohne dass wir davon Kenntnis nehmen. Ihre Bedeutung wächst täglich, dennoch weiß fast die Hälfte der Europäer nicht, was Algorithmen sind. So hat eine repräsentative Studie der Bertelsmann-Stiftung herausgefunden, dass rund 48 Prozent gar nicht wissen, worum es sich bei Algorithmen handelt. 15 Prozent der Befragten haben den Begriff überhaupt noch nie gehört, und 33 Prozent haben ihn zwar einmal vernommen, wissen jedoch nicht, was er bedeutet. Lediglich 8 Prozent meinen, gut über Algorithmen Bescheid zu wissen.13

Regelbasierte algorithmische Systeme sind Berechnungsverfahren, um rechnerische Probleme zu lösen. Sie werden von Menschen programmiert und daher können wir diese Entwicklung auch selbst steuern. Ihre vielfältigen Einsatzmöglichkeiten und ihre Auswirkungen sind somit absehbar. Weil Algorithmen berechenbar sind, stehen wir auch keineswegs vor einer unbewältigbaren Herausforderung, wie manchmal behauptet wird. Laut Bertelsmann-Studie sehen 46 Prozent der EU-Bürger im Einsatz von Algorithmen Vorteile, für rund 20 Prozent überwiegen die Nachteile. Ganz gleich, welche Einstellung wir pflegen, der Algorithmen-Kompetenz wird in Zukunft in unserer Gesellschaft immense Bedeutung zukommen, die in frühester Kindheit vermittelt und erlernt und das ganze Leben lang erweitert und vertieft werden wird.

Programmierer im digitalen Zeitalter sind gefordert, nicht nur technische Probleme in den Griff zu bekommen, sondern auch juristische, gesellschaftliche, ethische und wirtschaftliche Aspekte bei ihrer Problemlösung miteinzubeziehen. Geisteswissenschaftler werden nicht umhinkommen, sich der Technik und den Naturwissenschaften anzunähern, und in der Medizin ist die Entwicklung bereits dermaßen fortgeschritten, dass sich das Berufsbild in einigen Bereichen schon grundlegend verändert hat.

Namensgeber des Algorithmus war der Autor eines Mathematiklehrbuchs, der iranische Universalgelehrte, Mathematiker, Astronom und Geograf Abu Dscha’far Muhammad ibn Musa al-Chwarizmi, latinisiert „Algorismi“, der im 9. Jahrhundert n. Chr. wirkte. Doch was steht hinter dem abstrakten Begriff des Algorithmus?