Генезис. Небо и Земля. Том 1. История

Tekst
Loe katkendit
Märgi loetuks
Kuidas lugeda raamatut pärast ostmist
Šrift:Väiksem АаSuurem Aa

§150. Роберт Хогарт Паттерсон (1862), предполагая распространение эфира, указал что этот поток вызывает трепет (колебание) или вибрационное движение в эфире, который заполняет межзвездные пространства. [292] До современной электромагнитной теории ранние физики постулировали, что невидимый светоносный эфир существовал как среда для переноса световых волн.

§151. В 1862 году Томсон опубликовал статью, в которой он вновь заявил о своей главной вере в неуничтожимость энергии (первый закон) и всеобщей диссипации энергии (второй закон), что приводит к диффузии тепла, прекращение полезного движения (работы), и высасывание энергетического потенциала с помощью материальной Вселенной. [293] Томсон написал: «Результатом неизбежно было бы состояние всеобщего покоя и смерти, если бы Вселенная была конечной и подчинялась существующим законам. Но невозможно представить себе предел в масштабах материи во Вселенной; и поэтому наука указывает скорее на бесконечный прогресс, через бесконечное пространство, действия, включающего преобразование потенциальной энергии в осязаемое движение и, следовательно, в тепло, чем на единый конечный механизм, идущий вниз, как часы, и останавливающийся навсегда».

§152. Андерс Ангстрем (1862), используя спектроскоп с фотографией для изучения спектр Солнца, солнечных пятен, хромосферы, протуберанцев и короны, в результате доказал, что в атмосфере Солнца содержится водород, а в 1868 году он опубликовал большую карту обычного солнечного спектра, включая подробные замеры более чем 1000 спектральных линий. [294,295] Хотя его измерения были неточными, но они долгое время оставались авторитетными в вопросах определения длины волны.

§153. В 1864 году Уильям Хаггинс в своей обсерватории, оборудованной 8-дюймовым телескопом при использовании линзы Элвина Кларка с помощью спектроскопии определил, что туманность состоит из газа. [296] Межзвездный газ был дополнительно удостоверен Слайфером в 1909 году, а затем межзвездная пыль была подтверждена им же в 1912 году.

§154. Рудольф Юлиус Эмануэль Клаузиус (1865) сформулировал закон неубывания энтропии, по которому «в изолированной системе энтропия не уменьшается». [297] Если в некоторый момент времени замкнутая система находится в неравновесном макроскопическом состоянии, то в последующие моменты времени наиболее вероятным следствием будет монотонное возрастание её энтропии. Закон неубывания энтропии или так называемый физический смысл второго закона термодинамики теоретическое обоснование которому было дано Людвигом Больцманом в 1870-е годы.

§155. Английский астроном Джозеф Норман Локьер (1866) разработал метод наблюдения протуберанцев вне затмения. Этот метод независимо от него открыл тогда же француз Пьер Жюль Жансен. Оба учёных в 1868 году обнаружили в спектре солнечной короны жёлтую линию, но Жансен ошибочно принял её за линию натрия103, а Локьер, благодаря более точным измерениям, обозначил её D3. [298] В 1871 году Локьер, сотрудничая с английским химиком Эдуардом Франклендом, предложил дать новому элементу название «гелий104». В 1887 году он предложил схему звёздной эволюции, которая, хотя и была основана на ошибочной метеорной гипотезе происхождения и развития звезд и на гипотезе диссоциации атомов, но позволила Локьеру предложить первую классификацию звёздных спектров, в которой подчеркивалось зависимость характера спектра звезды от температуры её атмосферы. [299]

§156. Гельмгольц (1869) во вступительном докладе на ежегодном собрании немецких естествоиспытателей в Инсбруке «О цели и об успехах естествознания» методологический анализ закона сохранения энергии заключает следующими словами: «…все силы природы могут быть измерены одной и той же механической мерой: все силы в отношении их работоспособности эквивалентны чисто механическим силам. В этом заключается первый значительный шаг, сделанный к разрешению обширной теоретической задачи – свести все явления природы к движению». [300]

§157. В 1871—1872 годах Джордж Биддель Эйри провёл серию точных опытов с астрономическим источником света, сделав из них вывод о том, что орбитальное движение Земли полностью увлекает эфир. [301] Опыт Эйри должен был дать ответ на вопрос – является ли эфир неподвижным, или увлекается движущимися в нём телами. Идея опыта для доказательства движения Земли была предложена хорватским учёным Руджером Иосипом Бошковичем в 1748 году, который указал наполнить телескоп водой. [302] Поскольку скорость света в воде на треть меньше, чем в воздухе, как Бошкович полагал, то за тот же промежуток времени движения телескопа вместе с Землей, свет от звезды сделает эллипс в полтора раза больше, так как скорость света в воде меньше скорости света в воздухе. Эксперименты других исследователей с заполненным водой телескопом приводили к существенно различающимся результатам. И тогда Эйри использовал большой гринвичский телескоп, заполнив его внутреннее пространство водой. Он исходил из следующего: угол наклона телескопа определяется отношением пути, который он «проезжает» вместе с Землёй (приблизительно 30 километров в секунду) за время, пока свет проходит от вершины телескопа до основания, к длине телескопа, или аналогично, угол наклона определяется отношением скорости движения телескопа (вместе с Землёй) к скорости распространения света внутри трубы телескопа. В его предположении скорость распространения света в воде составляет примерно 3/4 от скорости в воздухе, и следовательно, угол аберрации звёзд для телескопа заполненного водой должен измениться, увеличившись в 4/3 раза. Эйри повторил наблюдения гамма Дракона, которым занимался Брэдли, но уже через столб воды. Эксперимент проводился на хорошем оборудовании в течение одного года. Опыт подтвердил, что величина аберрации с высокой точностью не зависит от наличия водного промежутка на пути луча, таким образом опровергнув одну из моделей эфира, установив, что скорость света в воде и в воздухе одинакова.

§158. Понятие энтальпии105 было введено и развито Джозайя Уиллардом Гиббсом в 1875 году в работе «О равновесии гетерогенных веществ». [303] Для обозначения этого понятия Гиббс использовал выражение «тепловая функция при постоянном давлении», которая формализуется как функция состояния термодинамической системы, и определяемая как сумма внутренней энергии и произведения давления на объём. [304] Автором термина «энтальпия» в его современном значении считают Камерлинг-Оннеса. Впервые о его авторстве упоминает работа 1909 года в связи с обсуждением сохранения энтальпии в эффекте Джоуля – Томсона, хотя в печатных публикациях самого Камерлинг-Оннеса этот термин не встречается. Что же касается буквенного обозначения H, до 1920-х годов оно использовалось для количества теплоты вообще. Определение физической величины H строго как энтальпии или «теплосодержания при постоянном давлении» было официально предложено Альфредом Уильямом Портером в 1922 году. [305,306]

§159. Джон Керр (1875) описал явление двойного лучепреломления при наблюдении изотропного вещества, которое поместил в электрическое поле, а позже экспериментально доказал существование такого же явления применительно к магнитному полю. [307] Открытый им эффект впоследствии начал активно применяться в оптических затворах, получивших название ячейка Керра. В 1877 году Керр описал также магнитооптический эффект, а его исследование воздействия электрического поля на жидкие диэлектрики привело к описанию явления оптической анизотропии, что стало научно обоснованным подтверждением связи между оптическими и электрическими явлениями. [308]

§160. В 1877 году Георг Кантор получил результат, о котором сообщил в письме своему коллеге Юлиусу Вильгельму Рихарду Дедекинду: множества точек отрезка и точек квадрата имеют одну и ту же мощность (континуум), независимо от длины отрезка и ширины квадрата. [309,310] Заодно он сформулировал и безуспешно пытался доказать «континуум-гипотезу». Этому результату предшествовал ряд работ Кантора, в частности: в 1870 году ему удалось решить математическую задачу представления функции как суммы тригонометрических серий; в статье 1872 года Кантор дал вариант обоснования теории вещественных чисел, а в его модели вещественное число определяется как класс фундаментальных последовательностей рациональных чисел; Кантор представил доказательство в 1873 году, что рациональные числа могут быть подсчитаны и что есть ровно одно рациональное число для каждого естественного числа; в 1874 году ему удалось инвертировать вывод о том, что реальные цифры не могут быть подсчитаны, и при этом он также доказал, что почти все числа трансцендентные. [311] Первая статья Кантора, обобщающая ключевые результаты, появилась в 1878 году и называлась «К учению о многообразиях» (термин «многообразие» Кантор позже заменил на «множество»). [312] Публикация статьи не раз откладывалась по требованию Леопольда Кронекера, возглавлявшего кафедру математики Берлинского университета. Кронекер, считающийся предтечей конструктивной математики, с неприязнью относился к канторовской теории множеств, поскольку её доказательства нередко носят неконструктивный характер, без построения конкретных примеров; понятие актуальной бесконечности Кронекер считал абсурдным. Сам Кантор придерживался того же мнения, что и большинство математиков сегодня: любой непротиворечивый математический объект следует считать допустимым и существующим. Его теория множеств натолкнулась на резкую критику со стороны ряда известных математиков-современников – Анри Пуанкаре; позднее – Германа Вейля и Лёйтзена Брауэра. Они напоминали, что до Кантора все корифеи математики, от Аристотеля до Гаусса, считали актуальную бесконечность недопустимым научным понятием и отрицали её как легальный математический объект. [313] Кантор развил свою теорию в нескольких работах. [314] Со временем канторовская теория множеств была поставлена на аксиоматическую основу и стала краеугольным камнем в современном построении оснований математики, на неё опираются математический анализ, топология, функциональный анализ, теория меры и многие другие разделы математики.

 

§161. Интегральный закон излучения абсолютно чёрного тела был выведен Йозефом Стефаном (1879) на основе сделанных Джоном Тиндалем экспериментальных измерений. [315] Людвиг Больцман (1884), используя теоретические соображения термодинамики, считал некий идеальный тепловой двигатель со светом, как рабочим веществом, вместо газа. [316] Закон Стефана – Больцмана, определяет зависимость плотности мощности излучения абсолютно чёрного тела от его температуры: «Полная объёмная плотность равновесного излучения и полная испускательная способность абсолютно чёрного тела пропорциональны четвёртой степени его температуры». Закон очень точен только для идеальных черных объектов – идеальных излучателей, называемых черными телами; он работает как удобное приближение для большинства «серых» тел.

§162. В 1864 году Джеймс Максвелл поставил опыт с целью определить скорость Земли относительно эфира, однако позднее нашёл ошибку в своих выкладках и не стал публиковать результаты. Незадолго до смерти в 1879 году, он написал американскому астроному Дэвиду Пеку Тодду письмо на эту тему, которое он после смерти Максвелла направил Стоксу для публикации. [317] В этом письме Максвелл, исследуя задержку затмений, вызванных геоцентрическим положением Юпитера, предложил формулу, в которой вывел пропорциональность расстояния между Землей и Юпитером скорости света за вычетом скорости движения Солнца сквозь эфир с учетом косинуса широты с расчетной долготой, и времени прохождения расстояния от Юпитера до Земли, но сослался на недостаточность наблюдательных данных для проверки его метода.

§163. Альберт Абрахам Майкельсон (1881), ознакомившись с письмом Максвелла (1879) по определению скорости Земли относительно эфира, провел эксперимент для измерения зависимости скорости света от движения Земли относительно эфира при помощи изобретенного им оптического прибора исключительно высокой точности, который назвал интерферометром. [318] Результат первого эксперимента был отрицательным: смещения полос не совпадали по фазе с теоретическими, а колебания этих смещений только немного меньше теоретических. Статья о результатах опыта вызвала критику Хендрика Лоренца, который указал, что теоретическая точность опыта была завышена. [319] В 1887 году Майкельсон совместно с Эдвардом Уильямсом Морли провёл аналогичный, но существенно более точный эксперимент, известный как эксперимент Майкельсона – Морли и показавший, что наблюдаемое смещение несомненно меньше 1/20 теоретического и, вероятно, меньше 1/40. [320] В теории неувлекаемого эфира смещение должно быть пропорционально квадрату скорости, поэтому результаты были равносильны тому, что относительная скорость Земли в эфире меньше 1⁄6 её орбитальной скорости и несомненно меньше 1/4.

§164. Артур Юлиус Георг Фридрих Ауверс (1879, 1883) выпустил Фундаментальный Каталог (The Catalogue of Fundamental Stars) для фиксации на небе стандартной системы звездных координат. [321] Первый том содержит 539 звезд; во втором томе определены 83 звезды с южного неба в склонении до 100. Новый Фундаментальный Каталог был издан Петерсом106 (1907), и в нем помещены сведения для 925 звезд. [322] Третий Фундаментальный Каталог (FK3) был составлен Августом Копффом и опубликован в 1937 году с дополнением в 1938 году и содержал 1587 звёзд. [323] Копфф также принял участие совместно с Вальтером Фрике (1963) в составлении Четвертого Фундаментального Каталога (FK4), включившего сведения 1535 звезд в различных равноденствиях с 1950.0 и дополненного поправкой (FK4S), которая содержит еще 1987 звезд. [324] Фрике впоследствии возглавил команду при создании Пятого Фундаментального каталога (FK5), который обновил в 1988 году FK4 с новыми позициями для 1535 звезд. Расширение Пятого Фундаментального Каталога (FK5), опубликованное в 1991 году, добавило 3117 новых звезд. [325] Он был заменен Международной Небесной системой отсчета (ICRF) на базе квазара. Шестой фундаментальный каталог (FK6) представляет собой обновление FK5 за 2000 год, коррелированное с ICRF через спутник Hipparcos. Он состоит из двух частей: FK6 (I) и FK6 (III). FK6 (I) содержит 878 звезд, а FK6 (III) – 3 272 звезды. Оба являются обновленными и дополненными версиями FK5 с использованием данных каталога Hipparcos.

§165. Анри Луи Ле Шателье (1884) сформулировал термодинамический принцип подвижного равновесия для химических реакций: «Если вы применяете принуждение к химической системе в равновесии, она реагирует так, что эффект принуждения становится минимальным». [326] Позже Карл Фердинанд Браун (1887) независимо обобщил данный принцип: «Если вы применяете принуждение к системе, находящейся в равновесии, изменяя внешние условия, то в результате этого нарушения равновесия устанавливается новое равновесие, уклоняющееся от принуждения». [327] Впоследствии принцип Ле Шателье – Брауна был распространен на другие процессы восстановления равновесия любой природы (механическое, тепловое, химическое, электрическое): если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле107), то в системе усиливаются процессы, направленные в сторону противодействия изменениям. [328] В самом упрощенном виде данный принцип подразумевает, что любое изменение равновесия вызывает противоположную реакцию в реагирующей системе. Строгий (не формульный) вывод сокращённого принципа Ле Шателье – Брауна дан словесно Джозайя Уиллардом Гиббсом (1875) в работе «О равновесии гетерогенных веществ», преобразуя в описательный эквивалент. [329]

§166. Гиббс (1884) ввел понятие «ансамбля», подразумевающее совокупность большого числа неразличимых реплик рассматриваемой системы, взаимодействующих друг с другом, но которые изолированы от остальной Вселенной. Реплики могут находиться в различных микроскопических состояниях, определяемых, например, положением и импульсами составляющих молекул, но макроскопическое состояние, определяемое давлением, температурой и/или другими термодинамическими переменными, идентично. [330] Гиббс утверждал, что свойства системы, усредненные во времени, идентичны среднему значению по всем членам ансамбля, если «эргодическая гипотеза108» верна. Гиббс также использовал этот инструмент, чтобы получить отношения между системами, ограниченными различными способами, например, чтобы связать свойства системы при постоянном объеме и энергии с теми, при постоянной температуре и давлении. [331] Он считал, что доказательство зависит от двух положений: 1) конечная верхняя граница может быть установлена на общий потенциально доступный объем фазового пространства109; 2) сохраняется фазовой объем конечного элемента при динамике, к примеру, для механической системы это обеспечивается теоремой110 Жозефа Лиувилля (1838), по которой функция распределения гамильтоновой системы постоянна вдоль любой траектории в фазовом пространстве. [332]

§167. Шведский математик и физик Иоганн Якоб Бальмер (1885) математически описал длины волн красной, зелёной, синей и фиолетовой линий водородного спектра, и предсказал существование пятой линии с длиной волны в ближней ультрафиолетовой области, которую наблюдал Ангстрем, а также более дальних линий ряда, которые впоследствии были обнаружены Уильямом Хаггинсом в спектрах белых звёзд. [333,334] В 1886 году Карл Давид Толме Рунге предложил использовать в формуле Бальмера вместо длины волны её частоту. [335] В 1890 году Йоханнес Роберт Ридберг предложил записывать формулу в том виде, в котором она сохранилась до сих пор. [336] Таким образом предложенная Бальмером формула, описывающая четыре линии видимого спектра излучения водорода, получила развитие до принципов, позволяющих описать спектр любого химического элемента.

§168. Джон Людвиг Эмиль Дрейер (1888) на основе каталога Гершеля составил Новый Общий Каталог (New General Catalogue или NGC) каталог туманностей и скоплений звёзд, который включал 7840 объектов и является одним из крупнейших неспециализированных каталогов, и включает в себя все типы объектов далекого космоса. [337] В дополнение к нему Дрейер (1895) издал первый Индекс-каталог туманностей и звёзд – каталог галактик, туманностей и групп звёзд (IC I) с 1529 объектами, обнаруженными визуально между 1888 и 1894 годами, который уточнил в 1908 году, а также второй Индекс-каталог (IC II), включавший 1 400 объектов, зафиксированных между 1895 и 1907 годами, скорректированным им в 1912 году. [338—341] Новый Общий Каталог содержал много ошибок, которые в большинстве своем были устранены в Пересмотренном NGC (The Revised New General Catalogue или RNGC). Сбор данных для Пересмотренного каталога был опубликован профессором астрономии Аризонского университета Уильямом Тиффтом и профессором Андалусского Института Астрофизики Джеком Сулентиком в 1973 году. [342] Ввиду поспешности в Пересмотренном каталоге не только не были учтены все поправки в Общий Каталог, но и были допущены несколько новых ошибок111. Впоследствии каталоги периодически пересматривались и над ними работали различные ученые. Компиляция 1988 года NGC 2000,0 (The Complete New General Catalog and Index Catalog of Nebulae and Star Clusters) была сделана Роджером Синноттом c использованием новых координат J2000.0 для юлианского календаря, и включает в себя несколько исправлений и ошибок, сделанных астрономами на протяжении многих лет. [343] Проект NGC/IC – это коллаборация, сформированная в 1993 году для идентификации всех объектов NGC и IC и сбор изображений и основных астрономических данных о них. [344] Вольфгангом Штайнике к 2009 году выполнена всеобъемлющая и авторитетная обработка каталогов NGC и IC, которая получила название «Пересмотренный новый общий каталог и каталог индексов» (Revised New General Catalogue and Index Catalogue или RNGC / IC). [345,346] Данные каталоги являются наиболее популярными каталогами объектов далёкого космоса у любителей астрономии. Они также используются в большинстве электронных планетариев в качестве источников сведений об этих объектах.

 

§169. Георг Фридрих Юлиус Артур фон Ауверс (1888) издал новую обработку 3000 брадлеевских звезд, и этот каталог Ауверса-Брадлея оставался основой всех исследований о движении звезд, вплоть до издания «Предварительного генерального каталога» Льюиса Босса (1910), содержавшего 6188 звезд). [347] На основании своих исследований Ауверс определил параллакс Солнца по наблюдениям малых планет и прохождений Венеры по диску Солнца в 1874, 1882 годах. [348]

§170. Русский ученый Иван Осипович Ярковский (1888), под впечатлением работы Крукса, выдвинул «кинетическую гипотезу всемирного тяготения»112, в которой тяготению дается чисто механическое толкование. [349] Он полагал, что гравитационное ускорение тел связано с давлением на них хаотически движущихся частиц эфира. Всем прочим физическим явлениям также дается «кинетическое» объяснение. Ярковский представлял эфир (гипотетическую среду, переносящую световые колебания) как вполне материальный газ из микроскопических твердых неделимых частиц. Атомы же химических элементов он считал значительно более крупными агрегатами эфирных частиц. Каждое физическое тело, по замыслу Ярковского, постоянно поглощает частицы эфира, которые внутри него объединяются в химические элементы, увеличивая тем самым массу тела – таким образом звёзды и планеты растут. [350]

§171. Оливер Хевисайд (1888, 1889) вычислил деформацию электрического и магнитного полей вокруг движущегося заряда, а также эффекты вхождения заряда в более плотную среду, чем предсказал позднее установленный эффект Вавилова – Черенкова. [351] Следуя работе Хевисайда, ирландец Джордж Френсис Фицджеральд (1889) представил специальную гипотезу о том, что материальные тела также сжимаются в направлении движения, что приводит к сокращению длины, и может объяснить эксперимент Майкельсона-Морли – в отличие от уравнений Фойгта, где координата x изменилась. Фицджеральд обосновал это тем, что межмолекулярные силы, возможно, имеют электрическое происхождение. [352]

§172. Анри Пуанкаре (1889), изучая проблему трех тел, обнаружил, что могут существовать непериодические орбиты, которые, однако, не всегда увеличиваются и не приближаются к фиксированной точке. Стремясь понять устойчивость орбит в Солнечной системе, он применил Гамильтонову формулировку к уравнениям движения планет и изучил эти дифференциальные уравнения в ограниченном случае трех тел, чтобы получить свойства решений уравнений, такие как орбитальные резонансы и подковообразные орбиты. Он представил свой мемуар, озаглавленный «О проблеме уравнений динамики трех тел». Эта работа получила премию короля Швеции Оскара II в 1889 году. К 60-летию короля мемуар должен был быть опубликован в Acta Mathematica в день рождения короля, но Ларс Эдвард Фригмон и сам Пуанкаре определили, что имелись серьезные ошибки в работе. Пуанкаре призвал изъять статью, потратив на это большую часть призовых денег. В 1890 году она была, наконец, опубликована в пересмотренной форме, и в течение следующих десяти лет Пуанкаре расширил ее в монографию «Новые методы в небесной механике». [353,354] В этой работе Пуанкаре сформулировал теорему возвращения (рекуррентности), которая утверждает, что почти все точки в любом подмножестве фазового пространства в итоге возвращаются к множеству. Системы, для которых справедлива теорема о возвращении Пуанкаре, являются консервативными системами; таким образом, все эргодические113 системы консервативны. Теорему Пуанкаре доказал в 1919 году Константин Каратеодори, используя теорию измерений. Работа Пуанкаре привела впоследствии к открытию теории хаоса.

§173. Максимилиан Франц Джозеф Корнелиус Вольф (1891) впервые использовал для поиска астероидов метод астрофотографии, при котором на снимках с большим периодом экспозиции астероиды оставляли короткие линии, что значительно увеличило продуктивность исследований и окончательно определило наличие пояса астероидов. [355]

§174. Электронная теория Хендрика Антуана Лоренца (1892) дополняет максвелловскую теорию электромагнитного поля представлением о дискретных электрических зарядах как основе строения вещества, была выдвинута для объяснения отрицательного результата опыта Майкельсона—Морли, и для спасения гипотезы неподвижного эфира допущено существование электронов в дополнение к эфиру. [356] Лоренц исследовал связь параметров двух электромагнитных процессов, один из которых неподвижен относительно эфира, а другой движется, и потом получил выражение для зависимости массы от скорости в случае электрона. Справедливость этой релятивистской формулы была подтверждена опытами Альфреда Бухерера (1908). [357] Лоренцом установлено, что взаимодействие поля с движущимися зарядами является источником электрических, магнитных и оптических свойств тел. В металлах движение частиц порождает электрический ток, тогда как в диэлектриках смещение частиц из положения равновесия вызывает электрическую поляризацию, обуславливающую величину диэлектрической постоянной вещества. Лоренц предложил модификацию модели Френеля, в которой эфир полностью неподвижен. Ему удалось вывести коэффициент волочения Френеля как результат взаимодействия движущейся воды с нерасщепленным эфиром. Он также обнаружил, что переход от одной системы отсчета к другой можно упростить, используя вспомогательную переменную времени, которую он назвал локальным временем. Однако теория Лоренца имела ту же фундаментальную проблему, что и теория Френеля: стационарный эфир противоречил эксперименту Майкельсона—Морли. Поэтому Лоренц предположил, что движущиеся тела сжимаются в направлении движения. К подобному выводу ранее пришел Джордж Фрэнсис Фицджеральд (1889) и предположение получило название гипотеза Фицджеральда-Лоренца. Эта гипотеза о сокращении материальных тел в направлении движения в неподвижном и неувлекаемом эфире обоснована тем, что движущиеся тела испытывают в направлении своего движения сокращение вполне определенной величины, которое тем сильнее, чем больше скорость тела. Сокращение максимально, когда скорость тела достигает скорости света в пустоте; в этом предельном случае длина тела в направлении движения стала бы равной нулю. Уравнения, которые Лоренц использовал для описания этих эффектов, теперь называются преобразованиями Лоренца в его честь и идентичны по форме уравнениям, которые Эйнштейн позже вывел из первых принципов114. В 1895 году Лоренц более широко объяснил коэффициент Френеля, основанный на концепции местного времени, и им были выведены линейные (или аффинные115) преобразования векторного (соответственно, аффинного) псевдоевклидова пространства116, сохраняющие длины или, что эквивалентно, скалярное произведение векторов лаплас. [358]

§175. Вильгельм Вин (1893) путём применения законов термодинамики к электромагнитному излучению впервые вывел закон смещения, из которого следует, что длина волны, на которую приходится максимум энергии в спектре равновесного излучения, обратно пропорциональна абсолютной температуре излучающего тела. [359,360] Этот закон устанавливает зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела. [361] Закон Вина о смещении длины волны максимальной энергии при изменении температуры применим для определения звездных температур. Однако, как обратил внимание Сванте Аррениус (1914), следует учитывать, что свет звезды, который мы видим, ослаблен поглощением в ее внешней атмосфере. [362]

§176. В 1895 году Джеймс Эдуард Килер и Аристарх Аполлонович Белопольский независимо друг от друга измерили доплеровский сдвиг разных частей колец Сатурна и обнаружили, что внутренние части движутся быстрее, чем внешние, что подтвердило вывод Максвелла, что кольца состоят из множества малых тел, подчиняющихся законам Кеплера. [363,364] По утверждениям исследователей работа Максвелла по устойчивости колец Сатурна считается «первой работой по теории коллективных процессов, выполненной на современном уровне». [365]

§177. Эрнст Мах (1896) постулировал, что инертные свойства тела зависят от массы и расположения других тел. [366] Следуя принципу наблюдаемости, Мах подверг критике понятие абсолютного пространства Ньютона, ускорением относительно которого Ньютон объяснял возникновение сил инерции. По Маху, источником инерции является ускорение не относительно абсолютного пространства, а относительно системы отсчета, связанной с удаленными звездами, масса которых является источником инерции. Отсюда вытекает что влияние всей массы во Вселенной определяет естественное движение. Впоследствии данное утверждение стало называться принципом Маха117.

§178. Питер Зееман (1896) выявил эффект, который обусловлен тем, что в присутствии магнитного поля электрон, обладающий магнитным моментом, приобретает дополнительную энергию. [367] Приобретённая энергия приводит к снятию вырождения атомных состояний по магнитному квантовому числу и расщеплению атомных спектральных линий. Предположение, что спектральные линии могут расщепляться в магнитном поле, было впервые высказано Майклом Фарадеем, который не смог наблюдать эффект из-за отсутствия источника достаточно сильного поля. Эффект был впервые обнаружен Зееманом для узкой зелёно-голубой линии кадмия. В своём опыте Зееман применял магнитные поля и наблюдал расщепление линии на триплет. Зееман сослался на Фарадея как на автора идеи. Об этих опытах узнал Хендрик Лоренц, который уже на следующий день встретился с Зееманом и привёл ему своё объяснение, основанное на разработанной им же классической электронной теории. Вскоре, однако, обнаружилось, что спектральные линии большинства других веществ расщепляются в магнитном поле более сложным образом. Объяснить этот эффект удалось только в рамках квантовой физики с развитием представлений о спине118. За открытие и объяснение эффекта Зееман и Лоренц были награждены Нобелевской премией по физике 1902 года с обоснованием за исследования влияния магнетизма на явления излучения.

§179. Антония Каэтана де Пайва Перейра Мори (1897), работая в Гарвардской обсерватории над звездным каталогом Генри Дрейпера, наблюдала звездные спектры и опубликовала важный каталог классификаций, включив деление звёзд по ширине их спектральных линий. [368] В рамках этой работы она заметила периодическое удвоение некоторых линий в спектре звезды Мицар119, что привело к публикации первого спектроскопического описания бинарной орбиты.

103Поскольку, имея длину волны около 588 нм, она была очень близко расположена к известным тогда фраунгоферовым линиям натрия D1 (589,59 нм) и D2 (588,99 нм).
104Гелий – от др.-греч. [hḗlios] – «солнце».
105Энтальпи́я – от др.-греч. [enthalpō] – «нагреваю», также тепловая функция, тепловая функция Гиббса, теплосодержание и изобарно-изоэнтропийный потенциал.
106Полное имя Peters, J. пока не найдено.
107Когда любая система, находящаяся в равновесии в течение длительного периода времени, подвергается изменению концентрации, температуры, объема или давления, система переходит в новое равновесие, и это изменение частично противодействует примененному изменению. Например: При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры – в направлении экзотермической реакции. В общем же случае при изменении температуры химическое равновесие смещается в сторону процесса, знак изменения энтропии в котором совпадает со знаком изменения температуры. При повышении давления равновесие сдвигается в направлении, в котором уменьшается суммарное количество моль газов и объем реакции, и наоборот. При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции (вправо); а при повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ (влево). Правильность этой концепции может быть подтверждена как эмпирически, то есть в эксперименте, так и расчетами температурной, давящей и концентрационной зависимости свободной реакционной энтальпии.
108Эргодическая гипотеза, утверждающая, что все микросостояния системы отбираются с равной вероятностью, применима к большинству систем, за исключением систем, которые находятся в метастабильных состояниях. Таким образом, метод усреднения ансамбля дает простой способ рассчитать термодинамические свойства системы, не наблюдая ее в течение длительных периодов времени.
109Для механической системы эта связь может быть обеспечена, если система содержится в ограниченной области физического пространства (так что она не может, например, выбрасывать частицы, которые никогда не возвращаются) – в сочетании с сохранением энергии, это блокирует систему в конечной области в фазовом пространстве.
110Теорема Лиувилля, является ключевой теоремой в математической физике, статистической физике и гамильтоновой механике. Теорема утверждает сохранение во времени фазового объёма, или плотности вероятности в фазовом пространстве.
111Почти 800 объектов, перечислены как «несуществующие» в RNGC. Это обозначение применяется к объектам, которые являются дубликатами записей каталога, которые не были обнаружены в последующих наблюдениях, и к ряду объектов, каталогизированных как звездные скопления, которые в последующих исследованиях рассматривались как совпадающие группировки. В монографии 1993 года рассматривались 229 звездных скоплений, называемых несуществующими в RNGC. Они были «неправильно идентифицированы или не были обнаружены с момента их открытия в 18-м и 19-м веках». Он обнаружил, что один из 229—NGC 1498—на самом деле не был в небе. Пять других были дубликатами других записей, 99 существовали «в той или иной форме», а остальные 124 требовали дополнительных исследований для решения. В качестве другого примера отражение туманности NGC 2163 в Орионе было классифицировано как «несуществующее» из-за ошибки транскрипции Дрейера. Дрейер исправил свою ошибку в индексных каталогах, но RNGC сохранил первоначальную ошибку и дополнительно изменил знак склонения, в результате чего NGC 2163 был классифицирован как несуществующий.
112Он издал свою работу сперва на французском языке под названием «Гипотетический кинематограф вселенной гравитации, в связи с формированием химических элементов» («Hypothese cinetique de la gravitation universelle, en connexion avec la formation des elements chimiques» (1888)) и не пустил ее в продажу, а разослал персонально только ученым разных стран, а после получения ответов и отзывов на книгу в следующем году выпустил ее русское исправленное и дополненное издание.
113Эргодический (происходит от нем. ergodisch «эргодичный», из erg- + -odisch; первая часть – из др.-греч. [érgon] «дело, работа»; вторая часть – из др.-греч. [hodós] «дорога, путь», из праиндоевр. *ked-/*sed- «ходить») – спец. случайный, причём таким образом, что для каких-либо параметров математическое ожидание по временным рядам должно совпадать с математическим ожиданием по пространственным рядам. Эргодическая теория – раздел математики, изучающий статистические свойства детерминированных динамических систем; это изучение эргодичности. В этом контексте под статистическими свойствами понимаются свойства, которые выражаются через поведение средних по времени различных функций вдоль траекторий динамических систем. Понятие детерминированных динамических систем предполагает, что уравнения, определяющие динамику, не содержат случайных возмущений, шума и т. д. Таким образом, статистика является свойствами динамики. Эргодическая теория, как и теория вероятностей, основана на общих понятиях теории мер. Его первоначальное развитие было мотивировано проблемами статистической физики. Центральной проблемой эргодической теории является поведение динамической системы, когда ей позволено работать в течение длительного времени. Эргодичность – специальное свойство некоторых динамических систем, состоящее в том, что в процессе эволюции почти каждое состояние с определённой вероятностью проходит вблизи любого другого состояния системы. Для эргодических систем математическое ожидание по временным рядам должно совпадать с математическим ожиданием по пространственным рядам. То есть для определения параметров системы можно долго наблюдать за поведением одного её элемента, а можно за очень короткое время рассмотреть все её элементы (или достаточно много элементов). Если система обладает свойством эргодичности, то в обоих случаях получатся одинаковые результаты. Преимущество эргодических динамических систем в том, что при достаточном времени наблюдения такие системы можно описывать статистическими методами. Например, температура газа – это мера средней энергии молекулы. Предварительно необходимо доказать эргодичность данной системы. Эргодическая гипотеза в статистической физике – предположение о том, что средние по времени значения физических величин, характеризующих систему, равны их средним статистическим значениям; служит для обоснования статистической физики. В физике и термодинамике эргодическая гипотеза говорит, что за длительные периоды времени время, проведённое частицей в некоторой области фазового пространства микросостояний с той же самой энергией, пропорционально объёму этой области, то есть что все доступные микросостояния равновероятны за длительный период времени.
114В отличие от уравнений Эйнштейна, преобразования Лоренца были строго случайными, их единственным оправданием было то, что они, казалось, работали.
115Аффи́нное простра́нство – математический объект (пространство), обобщающий некоторые свойства евклидовой геометрии. В отличие от векторного пространства, аффинное пространство оперирует с объектами не одного, а двух типов: «векторами» и «точками». Аффинное пространство, ассоциированное с векторным пространством над полем – множество со свободным транзитивным действием аддитивной группы (если поле явно не указано, то подразумевается, что это – поле вещественных чисел).
116Псевдоевклидово пространство – конечномерное вещественное векторное или аффинное пространство с невырожденным индефинитным скалярным произведением, которое называют также индефинитной метрикой. Индефинитная метрика не является метрикой в смысле определения метрического пространства, а представляет собой частный случай метрического тензора. Важнейшим примером псевдоевклидова пространства является пространство Минковского.
117Принцип Маха ― утверждения, охватывающие три вида вопросов: Существование пространства и времени неразрывно связано с существованием физических тел. Удаление всех физических тел прекращает существование пространства и времени. Причиной существования инерциальных систем отсчёта является наличие далёких космических масс. Инертные свойства каждого физического тела определяются всеми остальными физическими телами во Вселенной и зависят от их расположения. В классической механике и теории относительности, напротив, считается, что инертные свойства тела, например, его масса, не зависят от наличия или отсутствия других тел. Однако в общей теории относительности от окружающей материи зависят свойства локально инерциальных систем отсчёта, относительно которых и определяются инертные свойства тел, что может считаться конкретной реализацией принципа Маха. Принцип Маха в его исходной формулировке не выполняется в теории относительности. Это утверждение следует из того, что принцип относительности инерции допускает мгновенность передачи действия на расстояние (принцип дальнодействия), а в основе теории относительности лежит принцип близкодействия (скорость передачи действия конечна и не превышает скорость света в вакууме); в пустом пространстве, согласно специальной теории относительности, все тела обладают инерцией, независимо от наличия или отсутствия других тел: также, известно, что одна и та же сила сообщает данному телу одинаковое ускорение, независимо от наличия или отсутствия рядом других тел.
118Спин (от англ. spin, буквально – вращение, вращать (-ся)) – собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с движением (перемещением или вращением) частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы. Спин измеряется в единицах ħ (приведённой постоянной Планка, или постоянной Дирака) и равен ħJ, где J – характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число – так называемое спиновое квантовое число, которое обычно называют просто спином (одно из квантовых чисел). Спин – квантовая характеристика, не имеющая классических аналогов и являющаяся внутренним свойством квантовых объектов, характеризующая их равноправно с такими величинами, как масса или электрический заряд.
119Мицар – звезда в созвездии Большой Медведицы, вторая от конца ручки большого «ковша». Люди с хорошим зрением видят рядом с Мицаром ещё одну звезду, называемую Алькор или 80 UMa. Название в переводе с арабского означает забытая или незначительная. Способность видеть Алькор – традиционный способ проверки зрения. Звёздная величина Алькора 4,02, спектральный класс A5 V. Расстояние между Мицаром и Алькором превышает четверть светового года. Долгое время не удавалось доказать физическое единство системы Алькор – Мицар (близость собственного движения звёзд ещё не означает вхождение в двойную систему); в 2009 году астрономы Рочестерского университета провели более точные измерения и показали, что обе звезды входят в физически связанную систему, состоящую из 6 звёзд. Таким образом, кратная система (Мицар – Алькор) состоит из шести компонентов: двойные звезды Мицар А и Мицар В, и лежащая на расстоянии около 0,3 световых лет от них двойная звезда Алькор (около 12 угловых минут). При наблюдении в телескоп Мицар сам по себе виден как двойная звезда, включающая Мицар A и Мицар B. Мицар B имеет звёздную величину 4,0 и спектральный класс A7, расстояние между Мицаром A и Мицаром B – 380 а. е. (15 угловых секунд), период обращения – несколько тысяч лет.