Tasuta

Essays: Scientific, Political, and Speculative, Volume II

Tekst
iOSAndroidWindows Phone
Kuhu peaksime rakenduse lingi saatma?
Ärge sulgege akent, kuni olete sisestanud mobiilseadmesse saadetud koodi
Proovi uuestiLink saadetud

Autoriõiguse omaniku taotlusel ei saa seda raamatut failina alla laadida.

Sellegipoolest saate seda raamatut lugeda meie mobiilirakendusest (isegi ilma internetiühenduseta) ja LitResi veebielehel.

Märgi loetuks
Šrift:Väiksem АаSuurem Aa

And here it becomes manifest that not only is classification carried on by grouping together in the mind things that are like; but that classes and sub-classes are formed and arranged according to the degrees of unlikeness. Things strongly contrasted are alone distinguished in the lower stages of mental evolution; as may be any day observed in an infant. And gradually as the powers of discrimination increase, the strongly-contrasted classes at first distinguished, come to be each divided into sub-classes, differing from each other less than the classes differ; and these sub-classes are again divided after the same manner. By the continuance of which process, things are gradually arranged into groups, the members of which are less and less unlike; ending, finally, in groups whose members differ only as individuals, and not specifically. And thus there tends ultimately to arise the notion of complete likeness. For manifestly, it is impossible that groups should continue to be subdivided in virtue of smaller and smaller differences, without there being a simultaneous approximation to the notion of no difference.

Let us next notice that the recognition of likeness and unlikeness, which underlies classification, and out of which continued classification evolves the idea of complete likeness – let us next notice that it also underlies the process of naming , and by consequence language. For all language consists, at the outset, of symbols which are as like to the things symbolized as it is practicable to make them. The language of signs is a means of conveying ideas by mimicking the actions or peculiarities of the things referred to. Verbal language also, in its first stage, is a mode of suggesting objects or acts by imitating the sounds which the objects make, or with which the acts are accompanied. Originally these two languages were used simultaneously. It needs but to watch the gesticulations with which the savage accompanies his speech – to see a Bushman dramatizing before an audience his mode of catching game – or to note the extreme paucity of words in primitive vocabularies; to infer that in the beginning, attitudes, gestures, and sounds, were all combined to produce as good a likeness as possible of the things, animals, persons, or events described; and that as the sounds came to be understood by themselves the gestures fell into disuse: leaving traces, however, in the manners of the more excitable civilized races. But be this as it may, it suffices simply to observe, how many of the words current among barbarous peoples are like the sounds appertaining to the things signified; how many of our own oldest and simplest words have the same peculiarity; how children habitually invent imitative words; and how the sign-language spontaneously formed by deaf mutes is based on imitative actions – to be convinced that the notion of likeness is that from which the nomenclature of objects takes its rise. Were there space we might go on to point out how this law of likeness is traceable, not only in the origin but in the development of language; how in primitive tongues the plural is made by a duplication of the singular, which is a multiplication of the word to make it like the multiplicity of the things; how the use of metaphor – that prolific source of new words – is a suggesting of ideas which are like the ideas to be conveyed in some respect or other; and how, in the copious use of simile, fable, and allegory among uncivilized races, we see that complex conceptions which there is no direct language for, are rendered, by presenting known conceptions more or less like them.

This view is confirmed, and the predominance of this notion of likeness in primitive thought further illustrated, by the fact that our system of presenting ideas to the eye originated after the same fashion. Writing and printing have descended from picture-language. The earliest mode of permanently registering a fact was by depicting it on a skin and afterwards on a wall; that is – by exhibiting something as like to the thing to be remembered as it could be made. Gradually as the practice grew habitual and extensive, the most frequently repeated forms became fixed, and presently abbreviated; and, passing through the hieroglyphic and ideographic phases, the symbols lost all apparent relation to the things signified: just as the majority of our spoken words have done.

Observe, again, that the same thing is true respecting the genesis of reasoning. The likeness which is perceived to exist between cases, is the essence of all early reasoning and of much of our present reasoning. The savage, having by experience discovered a relation between a certain object and a certain act, infers that the like relation will be found in future. And the expressions we use in our arguments – “ analogy implies,” “the cases are not parallel ,” “by parity of reasoning,” “there is no similarity ,” – show how constantly the idea of likeness underlies our ratiocinative processes. Still more clearly will this be seen on recognizing the fact that there is a close connexion between reasoning and classification; that the two have a common root; and that neither can go on without the other. For on the one hand, it is a familiar truth that the attributing to a body in consequence of some of its properties, all those other properties in virtue of which it is referred to a particular class, is an act of inference. And, on the other hand, the forming of a generalization is the putting together in one class, all those cases which present like relations; while the drawing a deduction is essentially the perception that a particular case belongs to a certain class of cases previously generalized. So that as classification is a grouping together of like things; reasoning is a grouping together of like relations among things. Add to which, that while the perfection gradually achieved in classification consists in the formation of groups of objects which are completely alike; the perfection gradually achieved in reasoning consists in the formation of groups of cases which are completely alike.

Once more we may contemplate this dominant idea of likeness as exhibited in art. All art, civilized as well as savage, consists almost wholly in the making of objects like other objects; either as found in Nature, or as produced by previous art. If we trace back the varied art-products now existing, we find that at each stage the divergence from previous patterns is but small when compared with the agreement; and in the earliest art the persistency of imitation is yet more conspicuous. The old forms and ornaments and symbols were held sacred, and perpetually copied. Indeed, the strong imitative tendency notoriously displayed by the lowest human races – often seeming to be half automatic, ensures among them a constant reproducing of likenesses of things, forms, signs, sounds, actions and whatever else is imitable; and we may even suspect that this aboriginal peculiarity is in some way connected with the culture and development of this general conception, which we have found so deep and wide-spread in its applications.

And now let us go on to consider how, by a further unfolding of this same fundamental notion, there is a gradual formation of the first germs of science. This idea of likeness which underlies classification, nomenclature, language spoken and written, reasoning, and art; and which plays so important a part because all acts of intelligence are made possible only by distinguishing among surrounding things, or grouping them into like and unlike; – this idea we shall find to be the one of which science is the especial product. Already during the stage we have been describing, there has existed qualitative prevision in respect to the commoner phenomena with which savage life is familiar; and we have now to inquire how the elements of quantitative prevision are evolved. We shall find that they originate by the perfecting of this same idea of likeness – that they have their rise in that conception of complete likeness which, as we have seen, necessarily results from the continued process of classification.

For when the process of classification has been carried as far as it is possible for the uncivilized to carry it – when the animal kingdom has been grouped not merely into quadrupeds, birds, fishes, and insects, but each of these divided into kinds – when there come to be classes, in each of which the members differ only as individuals, and not specifically; it is clear that there must frequently occur an observation of objects which differ so little as to be indistinguishable. Among several creatures which the savage has killed and carried home, it must often happen that some one, which he wished to identify, is so exactly like another that he cannot tell which is which. Thus, then, there originates the notion of equality. The things which among ourselves are called equal – whether lines, angles, weights, temperatures, sounds or colours – are things which produce in us sensations which cannot be distinguished from each other. It is true that we now apply the word equal chiefly to the separate traits or relations which objects exhibit, and not to those combinations of them constituting our conceptions of the objects; but this limitation of the idea has evidently arisen by analysis. That the notion of equality originated as alleged, will, we think, become obvious on remembering that as there were no artificial objects from which it could have been abstracted, it must have been abstracted from natural objects; and that the various families of the animal kingdom chiefly furnish those natural objects which display the requisite exactitude of likeness.

 

The experiences out of which this general idea of equality is evolved, give birth at the same time to a more complex idea of equality; or, rather, the process just described generates an idea of equality which further experience separates into two ideas – equality of things and equality of relations. While organic forms occasionally exhibit this perfection of likeness out of which the notion of simple equality arises, they more frequently exhibit only that kind of likeness which we call similarity; and which is really compound equality. For the similarity of two creatures of the same species but of different sizes, is of the same nature as the similarity of two geometrical figures. In either case, any two parts of the one bear the same ratio to one another, as the homologous parts of the other. Given in a species, the proportions found to exist among the bones, and we may, and zoologists do, predict from any one, the dimensions of the rest; just as, when knowing the proportions subsisting among the parts of a geometrical figure, we may, from the length of one, calculate the others. And if, in the case of similar geometrical figures, the similarity can be established only by proving exactness of proportion among the homologous parts – if we express this relation between two parts in the one, and the corresponding parts in the other, by the formula A is to B as a is to b; if we otherwise write this, A to B = a to b; if, consequently, the fact we prove is that the relation of A to B equals the relation of a to b; then it is manifest that the fundamental conception of similarity is equality of relations. With this explanation we shall be understood when we say that the notion of equality of relations is the basis of all exact reasoning. Already it has been shown that reasoning in general is a recognition of likeness of relations; and here we further find that while the notion of likeness of things ultimately evolves the idea of simple equality, the notion of likeness of relations evolves the idea of equality of relations: of which the one is the concrete germ of exact science, while the other is its abstract germ. Those who cannot understand how the recognition of similarity in creatures of the same kind, can have any alliance with reasoning, will get over the difficulty on remembering that the phenomena among which equality of relations is thus perceived, are phenomena of the same order and are present to the senses at the same time; while those among which developed reason perceives relations, are generally neither of the same order, nor simultaneously present. And if, further, they will call to mind how Cuvier and Owen, from a single part of a creature, as a tooth, construct the rest by a process of reasoning based on this equality of relations, they will see that the two things are intimately connected, remote as they at first seem. But we anticipate. What it concerns us here to observe is, that from familiarity with organic forms there simultaneously arose the ideas of simple equality , and equality of relations.

At the same time, too, and out of the same mental processes, came the first distinct ideas of number. In the earliest stages, the presentation of several like objects produced merely an indefinite conception of multiplicity; as it still does among Australians, and Bushmen, and Damaras, when the number presented exceeds three or four. With such a fact before us we may safely infer that the first clear numerical conception was that of duality as contrasted with unity. And this notion of duality must necessarily have grown up side by side with those of likeness and equality; seeing that it is impossible to recognize the likeness of two things without also perceiving that there are two. From the very beginning the conception of number must have been, as it is still, associated with likeness or equality of the things numbered; and for the purposes of calculation, an ideal equality of the things is assumed. Before any absolutely true numerical results can be reached, it is requisite that the units be absolutely equal. The only way in which we can establish a numerical relationship between things that do not yield us like impressions, is to divide them into parts that do yield us like impressions. Two unlike magnitudes of extension, force, time, weight, or what not, can have their relative amounts estimated, only by means of some small unit that is contained many times in both; and even if we finally write down the greater one as a unit and the other as a fraction of it, we state, in the denominator of the fraction, the number of parts into which the unit must be divided to be comparable with the fraction. It is, indeed, true, that by a modern process of abstraction, we occasionally apply numbers to unequal units, as the furniture at a sale or the various animals on a farm, simply as so many separate entities; but no exact quantitative result can be brought out by calculation with units of this order. And, indeed, it is the distinctive peculiarity of the calculus in general, that it proceeds on the hypothesis of that absolute equality of its abstract units, which no real units possess; and that the exactness of its results holds only in virtue of this hypothesis. The first ideas of number must necessarily then have been derived from like or equal magnitudes as seen chiefly in organic objects; and as the like magnitudes most frequently observed were magnitudes of extension, it follows that geometry and arithmetic had a simultaneous origin.

Not only are the first distinct ideas of number co-ordinate with ideas of likeness and equality, but the first efforts at numeration display the same relationship. On reading accounts of savage tribes, we find that the method of counting by the fingers, still followed by many children, is the aboriginal method. Neglecting the several cases in which the ability to enumerate does not reach even to the number of fingers on one hand, there are many cases in which it does not extend beyond ten – the limit of the simple finger notation. The fact that in so many instances, remote, and seemingly unrelated nations, have adopted ten as their basic number; together with the fact that in the remaining instances the basic number is either five (the fingers of one hand) or twenty (the fingers and toes); of themselves show that the fingers were the original units of numeration. The still surviving use of the word digit , as the general name for a figure in arithmetic, is significant; and it is even said that our word ten (Sax. tyn; Dutch, tien; German, zehn) means in its primitive expanded form two hands. So that, originally, to say there were ten things, was to say there were two hands of them. From all which evidence it is tolerably clear that the earliest mode of conveying the idea of a number of things, was by holding up as many fingers as there were things; that is, by using a symbol which was equal , in respect of multiplicity, to the group symbolized. For which inference there is, indeed, strong confirmation in the statement that our own soldiers spontaneously adopted this device in their dealings with the Turks during the Crimean war. And here it should be remarked that in this re-combination of the notion of equality with that of multiplicity, by which the first steps in numeration are effected, we may see one of the earliest of those inosculations between the diverging branches of science, which are afterwards of perpetual occurrence.

As this observation suggests, it will be well, before tracing the mode in which exact science emerges from the inexact judgments of the senses, and showing the non-serial evolution of its divisions, to note the non-serial character of those preliminary processes of which all after development is a continuation. On re-considering them it will be seen that not only are they divergent branches from a common root, – not only are they simultaneous in their growth; but that they are mutual aids; and that none can advance without the rest. That progress of classification for which the unfolding of the perceptions paves the way, is impossible without a corresponding progress in language, by which greater varieties of objects are thinkable and expressible. On the one hand classification cannot be carried far without names by which to designate the classes; and on the other hand language cannot be made faster than things are classified. Again, the multiplication of classes and the consequent narrowing of each class, itself involves a greater likeness among the things classed together; and the consequent approach towards the notion of complete likeness itself allows classification to be carried higher. Moreover, classification necessarily advances pari passu with rationality – the classification of things with the classification of relations. For things that belong to the same class are, by implication, things of which the properties and modes of behaviour – the co-existences and sequences – are more or less the same; and the recognition of this sameness of co-existences and sequences is reasoning. Whence it follows that the advance of classification is necessarily proportionate to the advance of generalizations. Yet further, the notion of likeness , both in things and relations, simultaneously evolves by one process of culture the ideas of equality of things and equality of relations; which are the respective bases of exact concrete reasoning and exact abstract reasoning – Mathematics and Logic. And once more, this idea of equality, in the very process of being formed, necessarily gives origin to two series of relations – those of magnitude and those of number; from which arise geometry and the calculus. Thus the process throughout is one of perpetual subdivision and perpetual intercommunication of the divisions. From the very first there has been that consensus of different kinds of knowledge, answering to the consensus of the intellectual faculties, which, as already said, must exist among the sciences.

Let us now go on to observe how, out of the notions of equality and number , as arrived at in the manner described, there gradually arose the elements of quantitative prevision.

Equality, once having come to be definitely conceived, was recognizable among other phenomena than those of magnitude. Being predicable of all things producing indistinguishable impressions, there naturally grew up ideas of equality in weights, sounds, colours, &c.; and, indeed, it can scarcely be doubted that the occasional experience of equal weights, sounds, and colours, had a share in developing the abstract conception of equality – that the ideas of equality in sizes, relations, forces, resistances, and sensible properties in general, were evolved during the same stage of mental development. But however this may be, it is clear that as fast as the notion of equality gained definiteness, so fast did that lowest kind of quantitative prevision which is achieved without any instrumental aid, become possible. The ability to estimate, however roughly, the amount of a foreseen result, implies the conception that it will be equal to a certain imagined quantity; and the correctness of the estimate will manifestly depend on the precision which the perceptions of sensible equality have reached. A savage with a piece of stone in his hand, and another piece lying before him of greater bulk but of the same kind (sameness of kind being inferred from the equality of the two in colour and texture) knows about what effort he must put forth to raise this other piece; and he judges accurately in proportion to the accuracy with which he perceives that the one is twice, three times, four times, &c. as large as the other; that is – in proportion to the precision of his ideas of equality and number. And here let us not omit to notice that even in these vaguest of quantitative previsions, the conception of equality of relations is also involved. For it is only in virtue of an undefined consciousness that the relation between bulk and weight in the one stone is equal to the relation between bulk and weight in the other, that even the roughest approximation can be made.

But how came the transition from those uncertain perceptions of equality which the unaided senses give, to the certain ones with which science deals? It came by placing the things compared in juxtaposition. Equality being asserted of things which give us indistinguishable impressions, and no distinct comparison of impressions being possible unless they occur in immediate succession, it results that exactness of equality is ascertainable in proportion to the closeness of the compared things. Hence the fact that when we wish to judge of two shades of colour whether they are alike or not, we place them side by side; hence the fact that we cannot, with any precision, say which of two allied sounds is the louder, or the higher in pitch, unless we hear the one immediately after the other; hence the fact that to estimate the ratio of weights, we take one in each hand, that we may compare their pressures by rapidly alternating in thought from the one to the other; hence the fact, that in a piece of music, we can continue to make equal beats when the first beat has been given, but cannot ensure commencing with the same length of beat on a future occasion; and hence, lastly, the fact, that of all magnitudes, those of linear extension are those of which the equality is most precisely ascertainable, and those to which, by consequence, all others have to be reduced. For it is the peculiarity of linear extension that it alone allows its magnitudes to be placed in absolute juxtaposition, or, rather, in coincident position; it alone can test the equality of two magnitudes by observing whether they will coalesce, as two equal mathematical lines do, when placed between the same points; it alone can test equality by trying whether it will become identity. Hence, then, the fact, that all exact science is reducible, by an ultimate analysis, to results measured in equal units of linear extension.

 

Still it remains to be noticed in what manner this determination of equality by comparison of linear magnitudes originated. Once more may we perceive that surrounding natural objects supplied the needful lessons. From the beginning there must have been a constant experience of like things placed side by side – men standing and walking together; animals from the same herd; fish from the same shoal. And the ceaseless repetition of these experiences could not fail to suggest the observation, that the nearer together any objects were, the more visible became any inequality between them. Hence the obvious device of putting in apposition, things of which it was desired to ascertain the relative magnitudes. Hence the idea of measure. And here we suddenly come upon a group of facts which afford a solid basis to the remainder of our argument; while they also furnish strong evidence in support of the foregoing speculations. Those who look sceptically on this attempted rehabilitation of early mental development, and who think that the derivation of so many primary notions from organic forms is somewhat strained, will perhaps see more probability in the hypotheses which have been ventured, on discovering that all measures of extension and force originated from the lengths and weights of organic bodies, and all measures of time from the periodic phenomena of either organic or inorganic bodies.

Thus, among linear measures, the cubit of the Hebrews was the length of the forearm from the elbow to the end of the middle finger; and the smaller scriptural dimensions are expressed in hand-breadths and spans. The Egyptian cubit, which was similarly derived, was divided into digits, which were finger-breadths; and each finger-breadth was more definitely expressed as being equal to four grains of barley placed breadthwise. Other ancient measures were the orgyia or stretch of the arms , the pace , and the palm. So persistent has been the use of these natural units of length in the East, that even now some Arabs mete out cloth by the forearm. So, too, is it with European measures. The foot prevails as a dimension throughout Europe, and has done so since the time of the Romans, by whom, also, it was used: its lengths in different places varying not much more than men’s feet vary. The heights of horses are still expressed in hands. The inch is the length of the terminal joint of the thumb; as is clearly shown in France, where pouce means both thumb and inch. Then we have the inch divided into three barley-corns. So completely, indeed, have these organic dimensions served as the substrata of mensuration, that it is only by means of them that we can form any estimate of some of the ancient distances. For example, the length of a degree on the Earth’s surface, as determined by the Arabian astronomers shortly after the death of Haroun-al-Raschid, was fifty-six of their miles. We know nothing of their mile further than that it was 4000 cubits; and whether these were sacred cubits or common cubits, would remain doubtful, but that the length of the cubit is given as twenty-seven inches, and each inch defined as the thickness of six barley-grains. Thus one of the earliest measurements of a degree comes down to us in barley-grains. Not only did organic lengths furnish those approximate measures which satisfied men’s needs in ruder ages, but they furnished also the standard measures required in later times. One instance occurs in our own history. To remedy the irregularities then prevailing, Henry I. commanded that the ulna, or ancient ell, which answers to the modern yard, should be made of the exact length of his own arm.

Measures of weight had a kindred derivation. Seeds seem commonly to have supplied the units. The original of the carat used for weighing in India is a small bean. Our own systems, both troy and avoirdupois, are derived primarily from wheat-corns. Our smallest weight, the grain is a grain of wheat. This is not a speculation; it is an historically-registered fact. Henry III. enacted that an ounce should be the weight of 640 dry grains of wheat from the middle of the ear. And as all the other weights are multiples or sub-multiples of this, it follows that the grain of wheat is the basis of our scale. So natural is it to use organic bodies as weights, before artificial weights have been established, or where they are not to be had, that in some of the remoter parts of Ireland the people are said to be in the habit, even now, of putting a man into the scales to serve as a measure for heavy commodities.

Similarly with time. Astronomical periodicity, and the periodicity of animal and vegetable life, are simultaneously used in the first stages of progress for estimating epochs. The simplest unit of time, the day, nature supplies ready made. The next simplest period, the moneth or month, is also thrust upon men’s notice by the conspicuous changes constituting a lunation. For larger divisions than these, the phenomena of the seasons, and the chief events from time to time occurring, have been used by early and uncivilized races. Among the Egyptians the rising of the Nile served as a mark. The New Zealanders were found to begin their year from the reappearance of the Pleiades above the sea. One of the uses ascribed to birds, by the Greeks, was to indicate the seasons by their migrations. Barrow describes the aboriginal Hottentot as expressing dates by the number of moons before or after the ripening of one of his chief articles of food. He further states that the Kaffir chronology is kept by the moon, and is registered by notches on sticks – the death of a favourite chief, or the gaining of a victory, serving for a new era. By which last fact, we are at once reminded that in early history, events are commonly recorded as occurring in certain reigns, and in certain years of certain reigns: a proceeding which made a king’s reign a rude measure of duration. And, as further illustrating the tendency to divide time by natural phenomena and natural events, it may be noticed that even by our own peasantry the definite divisions of months and years are but little used; and that they habitually refer to occurrences as “before sheep-shearing,” or “after harvest,” or “about the time when the squire died.” It is manifest, therefore, that the approximately equal periods perceived in Nature gave the first units of measure for time; as did Nature’s approximately equal lengths and weights give the first units of measure for space and force.