Взламывая биологию

Tekst
2
Arvustused
Loe katkendit
Märgi loetuks
Kuidas lugeda raamatut pärast ostmist
Šrift:Väiksem АаSuurem Aa

Метаболизм

Метаболизм – это сумма всех химических реакций, необходимых для поддержания жизни. Термин происходит от греческого слова μεταβολή, означающего «превращение». Изучение метаболизма началось 400 лет назад с долгого и зловонного опыта Санторио Санторио.

Санторио Санторио, которого запомнили только по первому его имени (хотя разницы и нет), стал врачом в 21 год. Он практиковал в Венеции, где общался с великим физиком Галилео Галилеем. Самый знаменитый опыт Санторио был посвящен весу тела. Врач спроектировал передвижную платформу, подвешенную к рычагу для больших весов. Сидя на платформе, Санторио принимал пищу и записывал изменения своего веса. Если он оставался на платформе, он видел, как его вес постепенно вновь снижался. Врач взвешивал свои твердые и жидкие отходы и выяснил, что на потерю веса они вовсе не влияют. После 30 лет непрерывных опытов Санторио подтвердил, что общий вес его видимых испражнений меньше объема вещества, которое он поглотил. Он пришел к выводу, что различия возникают из-за «невидимого испарения».

Санторио садится на стул для взвешивания, чтобы с наслаждением поесть. Он прославился, сделав 32 000 замеров – по три в день в течение 30 лет.


ТЕРМОСКОП

Санторио считается изобретателем термоскопа, хотя некоторые утверждают, что придумал его Галилео Галилей. Термоскоп – это простое устройство, показывающее изменение температуры. Вода помещалась в стеклянную трубку и, расширяясь или сжимаясь при перепадах температуры, поднималась или опускалась. Мы знаем, что Санторио первым дополнил термоскоп шкалой с цифрами, сделав из него более полезный инструмент.

Построить и сломать

Изначально о неощутимом, или невыявляемом, испарении говорил Гален, но Санторио первым попытался измерить его. Его книга по данному предмету, «О медицине равновесия», принесла ему славу и стала первым системным исследованием метаболизма. Эксперимент Санторио доказывает, что пища обеспечивает тело энергией, хотя врач не обладал современными знаниями. Энергия превращает содержимое пищи в новые ткани и поддерживает жизненные процессы. В ХХ в. биохимики показали, что метаболизм – это последовательность реакций, и в каждой клетке под чутким контролем течет несколько тысяч таких реакций. Итогом, говоря общо, являются два процесса. Катаболизм расщепляет вещество, возможно, чтобы высвободить накопленную энергию или забрать ее из клетки. Анаболизм выстраивает новый материал и нужен для роста и поддержания жизнедеятельности.

Санторио попытался объяснить работу тела чисто механически. Он утверждал, что тело функционирует как часы, и характер работы зависит от положения и формы соединяющихся частей.

Эмбрионы

Эмбриология – это ответвление биологии, изучающее раннее развитие организма. До XVIII в. преобладала точка зрения, что эмбрион – полностью сформированный организм в миниатюре. Научный подход развенчал эту идею.

Термин «эмбрион» главным образом обозначает клубок делящихся клеток. Термин применяется к стадии развития организмов, начинающейся с момента, когда клетки проникают в стенки матки, и до конца восьмой недели после зачатия. После этого ребенок, обретший более определенные очертания, называется плодом.

Есть несколько претендентов на звание отца эмбриологии, и в их числе Марчелло Мальпиги, Каспар Фридрих Вольф, Аристотель и даже Леонардо да Винчи. Еще один человек, на него претендующий, – Иероним Фабриций. Он учился в Падуанском университете у великого анатома Габриэля Фаллопия (также известного как Габриэле Фаллопио), а в 1562 г. сменил его на должности профессора хирургии и анатомии в университете. Здесь он преподавал Уильяму Гарвею, открывателю кровообращения. Описание клапанов в венах, данное Фабрицием, указало Гарвею верное направление.


Иероним Фабриций, также известный как Джироламо Фабрицио, написал 16 книг по анатомии и развитию.


Внутреннее развитие

Именно работа Фабриция «О формировании плода» (De Formato Foetu), опубликованная в 1600 г., подготовила почву для сравнительной эмбриологии. В книге ученый изложил свои наблюдения о развитии плода у некоторых видов, в том числе у людей, и впервые детально описал структуру плаценты. Кроме того, Фабриций подтолкнул Гарвея к изучению эмбриологии. Исследуя стадо спаривающихся оленей, Гарвей обнаружил указания на развитие эмбриона в матке только через шесть–семь недель после спаривания и был убежден, что в действительности зачатие происходит еще где-то в теле. Путь оплодотворенной яйцеклетки по фаллопиевым трубам к матке проследили лишь спустя столетие.


Рисунок из книги Фабриция 1621 г. показывает стадии развития цыпленка внутри яйца.

ГАБРИЭЛЬ ФАЛЛОПИЙ

Фаллопий был анатомом-новатором и известен своим талантом вскрывать человеческие тела. Главным образом его интересовала анатомия головы, но в медицинские справочники он попал благодаря своим исследованиям устройства репродуктивных органов человека. Ученый описал два тонких канала, проводящих, как позже выяснилось, оплодотворенные яйцеклетки из яичников к матке. Сегодня они носят его имя: фаллопиевы трубы.

Клетка

Клетка – это кирпичик жизни. Все живые существа состоят как минимум из одной клетки. И открыл ее один из самых недооцененных исследователей.

Роберт Гук был гением от науки. Его вклад в самые разнообразные дисциплины крайне важен – он многое сделал не только для биологии, но и для химии, физики, астрономии, геологии и архитектуры. И все же, как ни удивительно, мы даже не знаем, как выглядел этот великий ученый. Ни одного портрета Гука не сохранилось.

Будучи студентом Оксфордского университета, Гук произвел впечатление на выдающихся профессоров естествознания своим талантом проектировать инструменты и ставить опыты. В результате он стал помощником химика Роберта Бойла. В 1662 г. Гука назначили куратором экспериментов во вновь созданном Лондонском королевском обществе, ему предписывалось демонстрировать опыты на собраниях академиков.

Гук завоевал себе место в истории биологии, выпустив книгу «Микрография». Она была опубликована в 1665 г. и фиксировала наблюдения, сделанные ученым с помощью составного микроскопа собственной конструкции. С его помощью Гук исследовал перья птиц, волосы, насекомых и другие организмы. Описания сопровождали изысканные иллюстрации, показывавшие, что Гук был не только первоклассным ученым, но и талантливым художником.


Через микроскоп Гук увидел структуры в кусочке пробкового дерева. Он назвал эти ячейки «клетками».


Самое известное наблюдение Гук сделал, исследуя тонкие срезы пробки. Он увидел, что они были «пористыми, похожими на пчелиные соты», и назвал эти поры «клетками», так как они напомнили ученому кельи, или комнаты монахов, в монастыре. То, что он обнаружил, было стенками клеток в ткани пробки. Гук также сообщил, что замечал похожие структуры в других растениях. Клетки, увиденные Гуком, были пустыми – он думал, что они задействованы в транспортировке жидкостей в живых растениях. Судя по всему, ученый не понял, что открытые им структуры были базовыми единицами всех живых организмов. В 1678 г., когда Антони ван Левенгук сообщил Лондонскому королевскому обществу об увиденных им «зверьках», Гука попросили подтвердить наблюдения голландца, и он успешно это сделал, чем помог Левенгуку получить признание. Сегодня мы знаем, что «зверьками» были одноклеточные простейшие и, возможно, бактерии.

МИКРОСКОП ГУКА

Микроскопы Гука изготавливал лондонский мастер Кристофер Кок, но сам Гук участвовал в их проектировании. У микроскопа были отдельные тубусы фокусировки и шаровой шарнир, чтобы регулировать обзор. Линзы, которые использовались в микроскопе Гука, к сожалению, были плохого качества. Ученый попытался исправить это, но изображение получалось слишком темным. Поэтому он нашел способ направить на свои образцы луч света. Чтобы добиться яркости, он пропускал свет от масляной лампы через наполненный водой сосуд.

Копия составного микроскопа и системы освещения Гука.


Палеонтология

Палеонтология изучает историю жизни на Земле. Она основывается на исследовании окаменелостей – останков когда-то живших существ, которые превратились в минералы или отпечатались в камне.

В попытках объяснить существование окаменелостей выдвигались разные предположения. По одной из теорий, восходящей к наследию Аристотеля, окаменелости формировались и росли в Земле благодаря «формирующей силе», которая создавала камни, похожие на живые существа. Леонардо да Винчи отмахнулся от подобной теории и заявил, что «такое мнение может исходить только от ума не слишком разумного». В качестве разгадки того феномена, что морские раковины находят в горах, он предложил гипотезу о том, что ракушки были покрыты землей еще до того, как оказались наверху, и что там, где сейчас суша, когда-то был океан. Да Винчи не публиковал свои мысли, а заносил их в личные дневники в начале XVI в. Только 150 лет спустя его взгляды независимо друг от друга пересмотрели Стено и Роберт Гук. Последний изучал окаменелости и геологию. Он стал первым человеком, поместившим окаменелости под микроскоп. Гук обнаружил сходство в строении ископаемых дерева и ракушек и живого дерева и раковин живых моллюсков. Ученый думал, что органический материал можно превратить в камень, погрузив в воду, насыщенную растворенными в ней минералами. Гук продолжил сравнивать ископаемые и живые организмы, заключив, что многие окаменелости представляют собой создания, которых больше не существует на Земле. Это был очень спорный взгляд в то время, так как идея вымирания противоречила религиозным верованиям.

 
ОТКРЫТИЯ СТЕНО

В 1666 г. датский анатом Нильс Стенсен, известный также как Николас Стено, взялся за вскрытие акулы. Его сразу поразило сходство ее зубов с треугольными камешками, которые называли «каменными языками». Стено заявил, что «каменные языки» на самом деле являются зубами когда-то живших акул, и утверждал, что первоначальные ткани акулы со временем заменили минералы. Стено предположил, что окаменелости – это срезы жизни различных периодов в истории Земли.

Работа Стено, посвященная ископаемым зубам акулы, положила начало палеонтологии.


«Зверьки»

Голландский торговец тканями Антони ван Левенгук решил рассмотреть свои тонкие материи поближе, а в результате основал новый отдел биологии. В процессе он обнаружил, что в природе существует гораздо больше, чем бросается в глаза.

В 1650-х гг. изобретательность Левенгука позволила ему создать маленькие высококачественные линзы, обеспечивающие увеличение в 250 раз и более. Микроскопы, сконструированые им, не были похожи на бочку – единственная линза устанавливалась между двумя небольшими металлическими пластинами, которые подносили близко к глазу, а регулируемымый стержень сзади держал образцы. С помощью этих инструментов Левенгук начал изучать разнообразные материалы, например воду из пруда, и с изумлением обнаружил мир крошечных животных (он назвал их зверьками), которые в ней плавали. Хотя он не был профессиональным ученым, он связался с Лондонским королевским обществом – отправил первое из более чем 150 писем, – описывая и иллюстрируя свои открытия. Левенгук был единственным, кто в то время вел подобные исследования, так как никто не смог сделать столь мощные линзы, а сам он держал свой метод в секрете.


Антони ван Левенгук (1632–1723) считается основателем микробиологии. Однако в более поздние свои годы он нашел новое призвание, став инспектором виноделен в Делфте.


Новые миры

Ученым потребовались сотни лет, чтобы разобраться, к чему же Левенгук привлек их внимание. Он увидел одноклеточных животных (тех, кого мы сегодня называем простейшими), мелких многоклеточных, таких как коловратки, крошечные растения (водоросли), и даже бактерии. Он также изучал жидкости тела и первым наблюдал сперматозоиды, находящиеся в мужской сперме. Это открытие вызвало споры и пересуды – годами многие ученые верили, что сперматозоиды скорее паразиты, а не половые клетки, как нам сегодня известно.


Примеры «зверьков», которых впервые наблюдал Левенгук.


Метаморфозы

Превращение, или метаморфоза, гусеницы в бабочку или головастика в лягушку всегда вызывала любопытство. С конца 1600-х гг. люди начали изучать эти примечательные изменения с научной точки зрения.

Голландский энтомолог Ян Сваммердам провел первые важные исследования предмета. В то время многие люди думали, что в результате метаморфозы один вид животного буквально превращается в совершенно другой. Сваммердам доказал, что это не так, продемонстрировав, что внутри личинок насекомых, таких как шелкопряд, уже можно различить формирующиеся крылья. Работу Сваммердама серьезно дополнил французский ученый Рене Реомюр, в 1734 г. опубликовавший «Мемуары по естественной истории насекомых».


Как это происходит?

Первые исследования были в основном анатомическими, но позже внимание сосредоточили непосредственно на механизмах наблюдаемых изменений. Было отмечено, что органы личинки насекомого при метаморфозах разрушаются, и что тело взрослой особи вновь вырастает из маленьких групп клеток. После открытия гормонов в начале ХХ в. стало известно, что метаморфозы происходят под действием гормонов. У лягушек и жаб изменения от головастика к взрослой особи провоцирует тиреоидный гормон. У насекомых же гормон называется ювенильным и циркулирует в крови личинки. Когда ювенильный гормон перестает поступать, начинается превращение.


Иллюстрация Рене де Реомюра, показывающая развитие личинки овода, оленьего паразита.


ШЕЛКОВИЧНЫЙ ЧЕРВЬ

Несмотря на свое название, шелковичный червь вовсе не червяк, а гусеница мотылька. Жизненный цикл шелковичного червя – пример «полной метаморфозы», проходящей в четыре этапа: яйцо, личинка, куколка (стадия покоя, когда формируются ткани взрослой особи) и взрослая особь (или имаго). Личинка, готовясь к окукливанию, плетет кокон из тонких нитей шелка. Это волокно собирают и превращают в тонкую ткань.

Olete lõpetanud tasuta lõigu lugemise. Kas soovite edasi lugeda?