Законы и закономерности развития систем. ТРИЗ. Изд. 2-е, испр. и дополненное

Tekst
Loe katkendit
Märgi loetuks
Kuidas lugeda raamatut pärast ostmist
Šrift:Väiksem АаSuurem Aa

– геометрические:

использование различных форм: треугольников, пятиугольников, шестиугольников, кругов, их частей (сегментов), гиперболических параболоидов, эллипсоидов, сфер и полусфер, конусов, сотовых конструкций.

Для придания большей прочности конструкций, полости заполняют жидкостями, гелями, сыпучими материалами, пластмассами и т. д.

Этап С представляет собой качественный скачок – переход на микроуровень, т.е. использование капиллярно-пористых материалов (КПМ).

Переход к капиллярной структуре изменяет требования к структурированию ячеек и использованию технологических эффектов.

В КПМ могут использоваться структуры с открытыми и закрытыми капиллярами различных размеров и направлений.

Из технологических эффектов на этапах C и D, прежде всего, используются капиллярные эффекты.

Наиболее известные из капиллярных эффектов: ультразвуковой капиллярный эффект, термокапиллярный эффект, электрокапиллярный эффект, геометрический капиллярный эффект.

Капилляр – это трубка с малым внутренним диаметром.

Капиллярные явления (от лат. Capillaris – волосяной), физические явления, заключающиеся в способности жидкости изменять уровень в капилляре.

Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например, воды в стеклянных трубках, песке, грунте и т. п.

Понижение жидкости происходит в капиллярах, не смачиваемых жидкостью, например, ртуть в стеклянной трубке.

Это явление обусловлено действием поверхностного натяжения на границе раздела несмешивающихся сред.

Ультразвуковой капиллярный эффект: увеличение в десятки раз скорости движения и высоты подъема жидкости в капиллярах при непосредственном воздействии ультразвука (рис. 5.52а). На рисунке стрелкой условно показано воздействие ультразвука (УЗ) на капилляр. При воздействии УЗ жидкость в капилляре поднимается на высоту h1 большую, чем в капилляре без воздействия h2 (h1> h2).

Рис. 5.52. Капиллярные эффекты


Действие термокапиллярного эффекта аналогично ультразвуковому капиллярному эффекту – увеличение скорости и высоты подъема жидкости при наличии в капилляре разности температур (рис. 5.52б). На рисунке стрелкой условно показано воздействие температуры (То) на капилляр. Наверху капилляра температура выше, чем внизу. Это условно показано знаком плюс (+То). Жидкость в капилляре течет в сторону большей температуры и поднимается на высоту h1 большую, чем в капилляре без воздействия h2 (h1> h2).

Электрокапиллярный эффект – зависимость поверхностного натяжения на границе раздела твердых и жидких электродов с растворами электролитов и расплавами ионных соединений от электрического потенциала. Эта зависимость обусловлена образованием двойного электрического слоя на границе раздела фаз.

Воздействие электрического потенциала (+U, -U) к капилляру условно показано стрелками (рис. 5.52в). Электрический ток заставляет жидкость течь в капилляре в определенном направлении и поднимается на высоту h1 большую, чем в капилляре без воздействия тока h2 (h1> h2). Приложение потенциала зависит от вида жидкости.

Изменением потенциала можно осуществлять инверсию смачивания – переход от несмачивания к смачиванию и наоборот56.

Геометрический капиллярный эффект – это условное название явления (название дал автор), при котором жидкость течет в сторону меньшего диаметра капилляра (рис. 5.52 г). Диаметр верхнего конца капилляра d2 меньше диаметра нижнего конца капилляра d1 (d1> d2). На рисунке утрированно показано сужение капилляра. В сужающемся капилляре жидкость поднимается на высоту h1 большую, чем в ровном капилляре h2 (h1> h2).

Изменить диаметр капилляра можно, например, если сделать его из материала с эффектом обратимой памяти формы. Тогда можно управлять движением жидкости.

Управлять процессами, происходящими в капиллярах, можно, изменяя вязкость и смачивание жидкости всеми известными способами, в том числе и химическими, например, использование поверхностно-активных веществ. Кроме того, можно использовать ферромагнитную или реологическую жидкости и магнитное или электрическое поля.

Наиболее эффективно применение сочетаний описанных эффектов для управления процессами, происходящими в капиллярах.

Помимо указанных ранее эффектов, в линии перехода к КПМ применяются осмос и электроосмос, эффекты, связанные с сорбцией и хемосорбцией (капиллярная конденсация, фотоадсорбционный эффект, влияние электрического поля на адсорбцию, адсорблюминисценция и хемолюминисценция, радикально-рекомбинационная люминесценция, адсорбционная эмиссия, влияния адсорбции на электропроводимость полупроводника).

Выше были описаны три линии развития КПМ (см. рис. 5.49, 5.50, 5.51):

1. Монолит твердое (1) или эластичное (2) → Вещество с одной полостью (A) → Вещество со многими полостями (B) → КПМ (C) → µКПМ (рис. 5.52а).

2. Полость → Структурированная полость → Полость, заполненная веществом → использование технологических эффектов ТЭ (рис. 5.52б).

3. Вещество с одной полостью A1→ вещество с двумя полостями A2 → вещество со многими полостями A3-A4 (рис. 5.52в).

Они представлены вместе на рис. 5.53.


Рис. 5.53. Линии развития капиллярно-пористого материала (КПМ)


В общем виде система развивается по всем трем направлениям, а все состояния могут быть описаны в виде морфологической матрицы, где в качестве морфем, помимо указанных трех составляющих может быть еще четвертая – виды технологических эффектов.

В упрощенном виде эту закономерность можно представить в виде схемы (рис. 5.54).


Рис. 5.54. Общая схема перехода к КПМ


Где

КПМ# – КПМ со структурированными капиллярами,

µКПМ# – µКПМ со структурированными капиллярами.

Структура полостей (ее форма) определяется функцией, которую должен выполнять данный материал или конструкция.

Например, для функции устойчивость часто делают перегородки в форме треугольников, пятиугольников, шестиугольников, кругов, их частей или других геометрических фигур. Наиболее часто встречаются полости в форме гиперболического параболоида, эллипсоидов, сфер и полусфер, конусов, сотовых конструкций.

Эти формы могут использоваться и для других функций.


5.3.6. Уменьшение степени управляемости


Закономерность уменьшения степени управляемости указывает на тенденцию создания простых приспособлений без механизации и автоматизации. Эта закономерность противоположена закону увеличения степени управляемости.


5.3.7. Закономерность увеличения степени динамичности


Определения


Развитие системы идет в направлении увеличения степени динамичности.

Динамичная система может изменять свои параметры, структуру (в частности форму), алгоритм, принцип действия и функции, чтобы наиболее эффективно достичь поставленную цель и удовлетворить потребность. Динамическая система в своем развитии может менять так же цель и потребность, приспосабливаясь к внешним и внутренним изменениям.

Изменения могут происходит:

– во времени;

– по условию.


Следствия из закономерности.

1. Статические системы стремятся стать динамическими.

2. Системы развиваются в сторону увеличения степени динамичности.


Основная линия увеличения степени динамичности


Увеличение динамичностипроисходит изменением динамичности параметров, структуры, алгоритма и принципа действия, функции, потребности и цели, которое может происходить во времени, в пространстве и по условию.

Степень динамичностиувеличивается переходом от изменения динамичности параметров к изменению динамичности структуры, алгоритма, принципа действия, функции, потребности и цели.

Основная линия увеличения степени динамичности показана на рис. 5.55.


Рис. 5.55. Линия увеличения степени динамичности


Изменение параметров


Изменение параметров системы – это наиболее простой способ увеличения степени динамичности системы с целью ее адаптации к внутренним и внешним изменениям.

Изменяться может любой параметр системы, например, электрические параметры (величина тока, напряжения, сопротивления и т. д.), оптические параметры (длина волны, яркость, освещенность и т. д.), акустические параметры (амплитуда и частота звука и т. п.), механические параметры (эластичность, жесткость, вязкость, число степеней свободы и т. д.) и т. д.

 

Изменение структуры


Увеличение степени динамичности системы может осуществляться путем изменения структуры системы – это более сложный способдинамизации, чем изменение параметров.

Под изменением структуры мы понимаем и изменение формы объекта.


Изменение алгоритма


Увеличение степени динамичности системы может осуществляться путем изменения алгоритма работы.


Изменение принципа действия


Увеличение степени динамичности системы может осуществляться путем изменения ее принципа действия.


Изменение функции


Увеличение степени динамичности системы может осуществляться путем изменения выполняемой функции.


Изменение потребностей


Увеличение степени динамичности системы может осуществляться путем изменения потребностей.


Изменение целей


Увеличение степени динамичности системы может осуществляться путем изменения целей.


Повышение динамичности


Система тем динамичнее, чем она более управляемая.

Динамичность системы повышается с увеличением скорости и точности адаптации к внешним и внутренним изменениям.

Скорость увеличения динамичности повышается с учетом изменений не только определенного параметра, а и его производных.

Идеально, когда система заранее готова к изменениям, т. е. имеет способность заранее прогнозировать изменения. С этой целью система должна использовать и/или выявлять и использовать тенденции, закономерности и законы развития системы, надсистемы и окружающей среды.

Точность адаптации может быть увеличена, если в законе управления системой учитывается интеграл от всех изменений или ведется учет предыдущих изменений.


Динамическая статичность


Статические системы достаточно устойчивы, но не мобильны. Мобильные системы часто не устойчивы. Для придания системе максимальной мобильности и устойчивости ее выполняют динамически статичной.

Динамическая статичность системы осуществляется за счет постоянного управления максимально мобильной системой. Такие системы называют с динамической устойчивостью.


5.3.8. Тенденция уменьшения динамичности


В отдельных случаях можно говорить о тенденции уменьшения динамичности – повышения статичности. Система стремится сохранять, не изменять, стабилизировать свои параметры, структуру (в частности форму), алгоритм и принцип действия, функции, чтобы наиболее эффективно достичь поставленной цели и удовлетворить потребности. Кроме того, статичная система стремится сохранить так же цели и потребности.

Стабилизация должна происходить во времени и/или в пространстве и/или по условию.

Название тенденции «уменьшение динамичности» условное. По существу, эта тенденция частный случай динамических системы, обеспечивающих постоянство параметра, структуры, функции, потребности, цели и т. д.

Динамическую статичность можно тоже рассматривать как частный случай тенденции уменьшения динамичности.

Существует много разновидностей систем, где необходимо поддерживать параметры стабильными (постоянными) – определенной величины. В качестве параметров можно указать, например, частоту, температуру, давление, натяжение, прочность и т. д.

Тенденция уменьшения степени динамичности (увеличения статичности) используется для развития систем, в которых необходимо стабилизировать определенные параметры или всю систему в целом.

Для динамизации системы используется закон увеличения степени динамичности.

5.4. Закономерность согласования – рассогласования

5.4.1. Общие представления


Закономерность согласования—рассогласования является основной из закономерностей эволюции систем. Структура этих закономерностей показана на рис. 5.56.


Рис. 5.56. Структура закономерности эволюции систем


Закономерность согласования—рассогласования включает две закономерности (рис. 5.57).

1. Закономерность согласования.

2. Закономерность рассогласования.


Рис. 5.57. Закономерность согласования – рассогласования


5.4.2. Структура закономерности согласования—рассогласования


Согласование—рассогласование проводится для недопущения вредных явлений или усиления полезных.

Закономерность согласования, которая будет изложена ниже, была сформулирована В. Петровым в 1975–1978. Закономерность рассогласования был предложена Э. Злотиной, а развита Б. Злотиным.

Опишем структуру закономерности согласования—рассогласования (рис. 5.58).

1. Объекты согласования—рассогласования.

1.1. Потребности.

1.2. Функции.

1.3. Принцип действия.

1.4. Система.

1.4.1. Структура:

– элементы;

– связи;

– форма;

– вещество.

1.4.2. Параметры.

1.4.3. Потоки.

1.5. Надсистема.

1.6. Окружающая среда.

1.7. Поля.

1.7.1. Энергия.

1.7.2. Информация.

– данные;

– знания.

2. Способы согласования—рассогласования.

2.1. Во времени.

2.2. В пространстве.

2.3. По условию.

2.4. Статическое (постоянное).

2.5. Динамическое (переменное).


Рис. 5.58. Структура закономерности согласования – рассогласования


Закономерность согласования—рассогласования является общей из закономерностей эволюции систем.

Принцип действия должен согласовываться с главной функцией, внешней средой, надсистемой и системой.

Процесс согласования принципа действия с главной функцией системы – это обеспечение этой функции, т. е. это выбор принципа действия рабочего органа.

5.5. Закономерность перехода в надсистему или подсистему

5.5.1. Общие представления


Закономерность перехода системы в надсистему и/или подсистему является основной из закономерностей эволюции систем. Структура этих законов показана на рис. 5.59.


Рис. 5.59. Структура закономерностей эволюции систем


Закономерность перехода в надсистему или подсистему включает две закономерности (рис. 5.60).

1. Закономерность перехода в надсистему.

2. Закономерность перехода в подсистему.


Рис. 5.60 Закономерность перехода в надсистему или подсистему

5.5.2. Закономерность перехода системы в надсистему

Закономерность перехода системы в надсистему разработан Г. Альтшуллером57. Он ее сформулировал следующим образом:

«Исчерпав ресурсы развития, система объединяется с другой системой, образуя новую, более сложную систему».

Системы объединяются в надсистему не только, когда исчерпали ресурсы своего развития, поэтому мы переформулировали эту закономерность.

Системы объединяются в надсистему, образуя новую более сложную систему.

Объединение систем в надсистему может проходить двумя путями (рис. 5.61):

– Объединение в новую более сложную систему, имеющую одну функцию (монофункциональная система);

· Переход системы от монофункцинальной к полифункцинальной.


Рис. 5.61. Закономерность перехода в надсистему


Переход системы от монофункционаьной к полифункционаьной первоначально осуществляется выявлением более общей функции, а затем придания дополнительных функций, при этом часто использует новые технологии.

Тенденция объединения элементов

Системы объединяются по определенной тенденции. Опишем ее (рис. 5.62).

Первоначально имеется одна – моносистема. Далее объединяют две исходные системы, при этом получатся бисистема. На следующем этапа объединяют три и более систем, образуется полисистема. Следующий этап развития, когда би- и/или полисистемы образуют новую единую систему (моносистему), которая выполняет все функции, входящих в нее систем. Эта операция называется свертыванием.


Рис. 5.62. Тенденция объединения систем


Переход «моно-би-поли» – неизбежный этап в развитии всех систем.

После объединения систем в би- или полисистему происходит некоторое изменение новой системы, требующие согласования составных частей и параметров системы. При этом сокращаются вспомогательные элементы, и устанавливается более тесная связь между отдельными системами. Такие системы называются частично свернутыми. Дальнейшее развитие приводит к полностью свернутым системам, в которых один объект выполняет несколько функций.

Полностью свернутую систему можно представить, как новую моносистему. Ее дальнейшее развитие связано с движение по новому витку спирали. Иногда в качестве новой моносистемы может выступать частично свернутая система.


Механизмы объединения элементов


Создание надсистемы путем объединения в би- и полисистему может включать следующие виды элементов (рис. 5.63).

1. Однородные

1.1. Одинаковые.

1.2. Однородные элементы со сдвинутыми характеристиками.

2. Неоднородные

2.1. Альтернативные (конкурирующие).

2.2. Антагонистические – инверсные (элементы с противоположными свойствами или функциями).

2.3. Дополнительные.


Рис. 5.63. Схема механизма тенденции перехода МОНО-БИ-ПОЛИ


Полностью схема закономерности перехода системы в надсистему представлена на рис. 5.64.


Рис. 5.64. Общая схема объединения систем


Объединение производится таким образом, что полезные (необходимые) качества отдельных элементов складываются, усиливаются, а вредные взаимно компенсируются или остаются на прежнем уровне. Объединение такого типа возможно, как для достаточно высокоразвитых систем, как и для простых элементов.

Дальнейшее развитие новых систем идет путем повышения их эффективностив двух направлениях.

1. Увеличение различия между элементами системы.

2. Развитие связей между элементами.

2.1. Система из практически самостоятельных, не связанных между собой элементов, не изменяющихся при объединении.

2.2. Система из частично измененных, согласованных между собой элементов, которые функционируют только вместе и только в данной системе. Это частично свернутая система.

2.3. Система полностью измененных элементов, которые работают только в данной моносистеме и отдельно применяться не могут.

 

5.5.3. Закономерность перехода системы в подсистему


Тенденция перехода системы в подсистему разработана В. Петровым58.

Эта тенденция является противоположной закономерности перехода в надсистему.

Система в своем развитии может сворачиваться до уровня подсистемы и даже вещества или вещества, выделяющего поле.

Переход осуществляется от надсистемы к системе, от системы к подсистеме, от подсистемы к веществу (рис. 5.65).


Рис. 5.65. Укрупненная схема тенденции перехода к веществу


В сложных системах переход от подсистемы к веществу осуществляется сначала к подподсистемам и т. д. вплоть до вещества или вещества, выделяющего поле.

Даная тенденция может использовать механизм свертывания и при переходе к веществу могут использоваться «умные» вещества.


5.5.4. Общая схема закономерности перехода системы в над- или подсистему


Представим полную схему закономерности перехода в надсистему или подсистему (рис. 5.66).


Рис. 5.66. Переход в надсистему или подсистему

5.6. Закономерность перехода на микроуровень и
на макроуровень

Закономерность перехода системы на микро- и макроуровень является основной из закономерностей эволюции систем (рис. 5.67).


Рис. 5.67. Структура закономерностей эволюции систем


5.6.1. Переход на микроуровень

Закономерность перехода системы на микроуровень заключается в том, что техника в своем развитии стремится перейти на микроуровень.

Чаще всего это относится к рабочему органу.

Микроуровень – условное понятие. В работе участвуют все более глубинные структуры вещества, например, использование нанотехнологий. При этом используются физические, химические, биологические и математические эффекты.


5.6.2. Переход на макроуровень


Закономерность перехода системы на макроуровень – это тенденция увеличения параметров системы.

Многие системы переходит не на микро-, а на макроуровень. В процессе эволюции многие системы постоянно увеличивают определенные параметры.

Среди этих параметров можно назвать:

– размер;

– мощность;

– скорость;

– емкость или объем;

– плотность;

– прочность;

– электропроводность и электроизоляцию;

– теплопроводность и теплоизоляцию;

– удельные параметры и т. д.

5.7. Закономерность свертывания – развертывания систем

5.7.1. Общие представления


Закономерность свертывания—развертывания является основной из закономерностей эволюции систем (рис. 5.68).


Рис. 5.68. Структура закономерностей эволюции систем


Закономерность свертывания – развертывания включает два закона (рис. 5.69).

1. Закономерность свертывания.

2. Закономерность развертывания.


Рис. 5.69. Закономерность свертывания – развертывания


5.7.2. Формулировка закономерности


Закономерность свертывания—развертывания заключается в том, что любая система в своем развитии сворачивает или разворачивает функции и элементы систем59.


5.7.3. Закономерность свертывания


Закономерность свертывания увеличивает степень идеальности за счет сокращения числа элементов системы без ухудшения (или при улучшении) функционирования.

Достичь этого можно, перераспределив полезные функции свернутых элементов между оставшимися элементами, а также их передачей элементам надсистемы или подсистемы.

Правила свертывания.

– Прежде всего, свертываются элементы или операции, выполняющие вредные функции.

– Затем свертывают маловажные элементы или операции особенно с большой относительной стоимостью.

– Можно свернуть дополнительные элементы или операции, если какой-то элемент или операция выполняют эту функцию самостоятельно.

– Функции устраненных элементов или операций должны быть переданы другим элементам или операциям системы (подсистемам) или надсистеме. Функции свернутых операций могут быть осуществлены на: предыдущих, последующие или параллельные операциях.

Свернуть можно и некоторые функции системы, например, неважные. Это позволит снизить себестоимость системы, за счет отсутствия затрат времени и средств на их выполнение.

При свертывании широко используются все виды ресурсов.

Рассмотрим некоторые пути свертывания систем.

1. Передача функций, свернутых частей системы другим элементам системы или операциям процесса.

2. Вытеснение части системы или операции в надсистему.

3. Миниатюризация.

4. Переход в подсистему.


Вытеснение части системы в надсистему


Подсистема или ее часть вытесняются в надсистему, превращаясь в специализированные системы в составе надсистемы.

Этот осуществляется следующим образом:

– Уменьшается количество элементов в системе;

– Уменьшается масса, габариты и энергопотребление;

– Увеличивается работоспособность:

– система становится проще;

– функция устраненной подсистемы выполняется надсистемой на более качественном уровне, так как осуществляется специализированной системой.


Миниатюризация


Миниатюризация всех подсистем в составе данной системы, без вытеснения подсистем в надсистему.

Нанотехнология позволяет не только осуществить миниатюризацию, он и получить качественно новые материалы, системы, процессы и эффекты.


Переход в подсистему


Тенденцию свертывание технической системы в подсистему мы частично рассмотрели в закономерности перехода в подсистему.

Здесь мы рассмотрим объединение подсистем в единый элемент. Подсистема выполняет функции других подсистем. Система превращается в рабочий орган, в вещество – в материальных системах и данные – в информационных системах. При этом часто используются «умные» вещества, выполняющие всю работу других подсистем.


5.7.4. Закономерность развертывания


Закономерность развертывания увеличивает степень идеальности за счет увеличения числа функций, выполняемых системой без ее усложнения, т. е. система становится полифункциональной.

Данная закономерность – один из способов увеличения степени идеальности, путем увеличения функциональности.

Для осуществления этой закономерности может быть использования закономерность «моно-би-полисвертывание» и механизм ее осуществления (см. закономерность перехода в надсистему):

– одинаковые системы;

– системы со сдвинутыми характеристиками;

– альтернативные системы;

– дополнительные системы;

– инверсные системы.

При развертывании можно использовать любые комбинации перечисленных видов систем.

Последовательность развертывания систем.

1. Выявление функций, которые мы хотим добавить к имеющейся системе.

2. Выявление альтернативных систем, выполняющих данные функции.

3. Выбор наилучших систем. Чаще всего выбирают систему, которая работает в самых тяжелых условиях и выпускается массовым производством.

4. Присоединение выбранных систем к имеющейся системе.

5. Определение достоинств и недостатков полученной системы.

6. Определение и разрешение противоречий.

7. Свертывание «лишних» элементов.

8. Максимальное использование ресурсов для развертывания системы.

Процесс объединения систем часто называют гибридизацией.

Можно выделить отдельные этапы развертывания систем:

1) гибридизация;

2) свертывание «лишних» элементов в гибридной системе;

3) максимальное использование ресурсов.


Гибридизация


Легче всего увеличить функциональность, присоединением элементов, выполняющих дополнительные функции – это путь гибридизации. При этом системы будет выполнять несколько функций.


Свертывание «лишних» элементов в гибридной системе


На этом этапе выявляются и разрешаются противоречия синтезированной гибридной системы, главным образом, удалением повторяющихся элементов, но сохраняя привнесенные новые функции.


Максимальное использование ресурсов


Один из путей увеличения степени идеальности – это использование ресурсов.

Первоначально выясняются все ресурсы системы.

Имеются следующие виды ресурсов.

1. Функции.

2. Элементы.

3. Связи между элементами.

4. Форма.

5. Энергия.

6. Информация.

7. Вещество.

8. Поле.

9. Потоки (вещества, энергии и информации).

10. Пространство.

11. Время.

12. Процессы.

13. Параметры.

14. Системные ресурсы.


Ресурсы могут браться в системе, подсистемах и надсистеме. Они могут использоваться в готовом виде или быть видоизменены.

Последовательность применения выявленных свойств по новому назначению системы может быть следующая.

1. Применение системы в целом.

1.1. Применение основных свойств, функций, действий в целом.

1.2. Применение вспомогательных свойств, функций, действий в качестве основных.

1.3. Применение ненужных или вредных свойств, функций, действий в качестве полезных.

1.4. Применение свойств, функций и действий, обратных выявленным.

2. Применение подсистем аналогично п.1.

3. Применение веществ и полей подсистем.

3.1. Применение основных для системы и подсистемы свойств веществ и полей.

3.2. Применение вспомогательных для данной системы свойств веществ и полей в качестве основных.

3.3. Применение ненужных для данной системы веществ и полей в качестве полезных.

3.4. Применение вредных для данной системы веществ и полей в качестве полезных.

4. Применение микроструктуры веществ подсистемы.

4.1. Применение основных свойств микроструктуры – молекул, атомов, элементарных частиц и т. п.

4.2. Применение вспомогательных для данной системы свойств микроструктуры.

4.3. Применение ненужных для данной системы свойств микроструктуры в качестве нужных.

4.4. Применение вредных для данной системы свойств микроструктуры в качестве полезных.

56Указатель физических эффектов и явлений для изобретателей и рационализаторов. – Обнинск, 1977.
57Альтшуллер Г. С. Найти идею. Введение в теорию решения изобретательских задач. – Новосибирск: Наука, 1986, С. 90—96.
  Петров В. Изменение масштабности технических систем. – Тель-Авив, 2002. URL: http://www.trizland.ru/trizba/pdf-books/zrts-15-masshtab.pdf.
59Под системой мы здесь понимаем и процесс, а под ее элементами и операции процесса.