Tasuta

On the Philosophy of Discovery, Chapters Historical and Critical

Tekst
iOSAndroidWindows Phone
Kuhu peaksime rakenduse lingi saatma?
Ärge sulgege akent, kuni olete sisestanud mobiilseadmesse saadetud koodi
Proovi uuestiLink saadetud

Autoriõiguse omaniku taotlusel ei saa seda raamatut failina alla laadida.

Sellegipoolest saate seda raamatut lugeda meie mobiilirakendusest (isegi ilma internetiühenduseta) ja LitResi veebielehel.

Märgi loetuks
Šrift:Väiksem АаSuurem Aa

CHAPTER XXII.
Mr. Mill's Logic 264

The History of the Inductive Sciences was published in 1837, and the Philosophy of the Inductive Sciences in 1840. In 1843 Mr. Mill published his System of Logic, in which he states that without the aid derived from the facts and ideas in my volumes, the corresponding portion of his own would most probably not have been written, and quotes parts of what I have said with commendation. He also, however, dissents from me on several important and fundamental points, and argues against what I have said thereon. I conceive that it may tend to bring into a clearer light the doctrines which I have tried to establish, and the truth of them, if I discuss some of the differences between us, which I shall proceed to do265.

Mr. Mill's work has had, for a work of its abstruse character, a circulation so extensive, and admirers so numerous and so fervent, that it needs no commendation of mine. But if my main concern at present had not been with the points in which Mr. Mill differs from me, I should have had great pleasure in pointing out passages, of which there are many, in which Mr. Mill appears to me to have been very happy in promoting or in expressing philosophical truth.

There is one portion of his work indeed which tends to give it an interest of a wider kind than belongs to that merely scientific truth to which I purposely and resolutely confined my speculations in the works to which I have referred. Mr. Mill has introduced into his work a direct and extensive consideration of the modes of dealing with moral and political as well as physical questions; and I have no doubt that this part of his book has, for many of his readers, a more lively interest than any other. Such a comprehensive scheme seems to give to doctrines respecting science a value and a purpose which they cannot have, so long as they are restricted to mere material sciences. I still retain the opinion, however, upon which I formerly acted, that the philosophy of science is to be extracted from the portions of science which are universally allowed to be most certainly established, and that those are the physical sciences. I am very far from saying, or thinking, that there is no such thing as Moral and Political Science, or that no method can be suggested for its promotion; but I think that by attempting at present to include the Moral Sciences in the same formulæ with the Physical, we open far more controversies than we close; and that in the moral as in the physical sciences, the first step towards showing how truth is to be discovered, is to study some portion of it which is assented to so as to be beyond controversy.

I. What is Induction?—1. Confining myself, then, to the material sciences, I shall proceed to offer my remarks on Induction with especial reference to Mr. Mill's work. And in order that we may, as I have said, proceed as intelligibly as possible, let us begin by considering what we mean by Induction, as a mode of obtaining truth; and let us note whether there is any difference between Mr. Mill and me on this subject.

"For the purposes of the present inquiry," Mr. Mill says (i. 347266), "Induction may be defined the operation of discovering and forming general propositions:" meaning, as appears by the context, the discovery of them from particular facts. He elsewhere (i. 370) terms it "generalization from experience:" and again he speaks of it with greater precision as the inference of a more general proposition from less general ones.

2. Now to these definitions and descriptions I assent as far as they go; though, as I shall have to remark, they appear to me to leave unnoticed a feature which is very important, and which occurs in all cases of Induction, so far as we are concerned with it. Science, then, consists of general propositions, inferred from particular facts, or from less general propositions, by Induction; and it is our object to discern the nature and laws of Induction in this sense. That the propositions are general, or are more general than the facts from which they are inferred, is an indispensable part of the notion of Induction, and is essential to any discussion of the process, as the mode of arriving at Science, that is, at a body of general truths.

3. I am obliged therefore to dissent from Mr. Mill when he includes, in his notion of Induction, the process by which we arrive at individual facts from other facts of the same order of particularity.

Such inference is, at any rate, not Induction alone; if it be Induction at all, it is Induction applied to an example.

For instance, it is a general law, obtained by Induction from particular facts, that a body falling vertically downwards from rest, describes spaces proportional to the squares of the times. But that a particular body will fall through 16 feet in one second and 64 feet in two seconds, is not an induction simply, it is a result obtained by applying the inductive law to a particular case.

But further, such a process is often not induction at all. That a ball striking another ball directly will communicate to it as much momentum as the striking ball itself loses, is a law established by induction: but if, from habit or practical skill, I make one billiard-ball strike another, so as to produce the velocity which I wish, without knowing or thinking of the general law, the term Induction cannot then be rightly applied. If I know the law and act upon it, I have in my mind both the general induction and its particular application. But if I act by the ordinary billiard-player's skill, without thinking of momentum or law, there is no Induction in the case.

4. This distinction becomes of importance, in reference to Mr. Mill's doctrine, because he has extended his use of the term Induction, not only to the cases in which the general induction is consciously applied to a particular instance; but to the cases in which the particular instance is dealt with by means of experience, in that rude sense in which experience can be asserted of brutes; and in which, of course, we can in no way imagine that the law is possessed or understood, as a general proposition. He has thus, as I conceive, overlooked the broad and essential difference between speculative knowledge and practical action; and has introduced cases which are quite foreign to the idea of science, alongside with cases from which we may hope to obtain some views of the nature of science and the processes by which it must be formed.

5. Thus (ii. 232) he says, "This inference of one particular fact from another is a case of induction. It is of this sort of induction that brutes are capable." And to the same purpose he had previously said (i. 251), "He [the burnt child who shuns the fire] is not generalizing: he is inferring a particular from particulars. In the same way also, brutes reason … not only the burnt child, but the burnt dog, dreads the fire."

6. This confusion, (for such it seems to me,) of knowledge with practical tendencies, is expressed more in detail in other places. Thus he says (i. 118), "I cannot dig the ground unless I have an idea of the ground and of a spade, and of all the other things I am operating upon."

7. This appears to me to be a use of words which can only tend to confuse our idea of knowledge by obliterating all that is distinctive in human knowledge. It seems to me quite false to say that I cannot dig the ground, unless I have an idea of the ground and of my spade. Are we to say that we cannot walk the ground, unless we have an idea of the ground, and of our feet, and of our shoes, and of the muscles of our legs? Are we to say that a mole cannot dig the ground, unless he has an idea of the ground and of the snout and paws with which he digs it? Are we to say that a pholas cannot perforate a rock, unless he have an idea of the rock, and of the acid with which he corrodes it?

8. This appears to me, as I have said, to be a line of speculation which can lead to nothing but confusion. The knowledge concerning which I wish to inquire is human knowledge. And in order that I may have any chance of success in the inquiry, I find it necessary to single out that kind of knowledge which is especially and distinctively human. Hence, I pass by, in this part of my investigation, all the knowledge, if it is to be so called, which man has in no other way than brutes have it;—all that merely shows itself in action. For though action may be modified by habit, and habit by experience, in animals as well as in men, such experience, so long as it retains that merely practical form, is no part of the materials of science. Knowledge in a general form, is alone knowledge for that purpose; and to that, therefore, I must confine my attention; at least till I have made some progress in ascertaining its nature and laws, and am thus prepared to compare such knowledge,—human knowledge properly so called,—with mere animal tendencies to action; or even with practical skill which does not include, as for the most part practical skill does not include, speculative knowledge.

 

9. And thus, I accept Mr. Mill's definition of Induction only in its first and largest form; and reject, as useless and mischievous for our purposes, his extension of the term to the practical influence which experience of one fact exercises upon a creature dealing with similar facts. Such influence cannot be resolved into ideas and induction, without, as I conceive, making all our subsequent investigation vague and heterogeneous, indefinite and inconclusive. If we must speak of animals as learning from experience, we may at least abstain from applying to them terms which imply that they learn, in the same way in which men learn astronomy from the stars, and chemistry from the effects of mixture and heat. And the same may be said of the language which is to be used concerning what men learn, when their learning merely shows itself in action, and does not exist as a general thought. Induction must not be applied to such cases. Induction must be confined to cases where we have in our minds general propositions, in order that the sciences, which are our most instructive examples of the process we have to consider, may be, in any definite and proper sense, Inductive Sciences.

10. Perhaps some persons may be inclined to say that this difference of opinion, as to the extent of meaning which is to be given to the term Induction, is a question merely of words; a matter of definition only. This is a mode in which men in our time often seem inclined to dispose of philosophical questions; thus evading the task of forming an opinion upon such questions, while they retain the air of looking at the subject from a more comprehensive point of view. But as I have elsewhere said, such questions of definition are never questions of definition merely. A proposition is always implied along with the definition; and the truth of the proposition depends upon the settlement of the definition. This is the case in the present instance. We are speaking of Induction, and we mean that kind of Induction by which the sciences now existing among men have been constructed. On this account it is, that we cannot include, in the meaning of the term, mere practical tendencies or practical habits; for science is not constructed of these. No accumulation of these would make up any of the acknowledged sciences. The elements of such sciences are something of a kind different from practical habits. The elements of such sciences are principles which we know; truths which can be contemplated as being true. Practical habits, practical skill, instincts and the like, appear in action, and in action only. Such endowments or acquirements show themselves when the occasion for action arrives, and then, show themselves in the act; without being put, or being capable of being put, in the form of truths contemplated by the intellect. But the elements and materials of Science are necessary truths contemplated by the intellect. It is by consisting of such elements and such materials, that Science is Science. Hence a use of the term Induction which requires us to obliterate this distinction, must make it impossible for us to arrive at any consistent and intelligible view of the nature of Science, and of the mental process by which Sciences come into being. We must, for the purpose which Mr. Mill and I have in common, retain his larger and more philosophical definition of Induction,—that it is the inference of a more general proposition from less general ones.

11. Perhaps, again, some persons may say, that practical skill and practical experience lead to science, and may therefore be included in the term Induction, which describes the formation of science. But to this we reply, that these things lead to science as occasions only, and do not form part of science; and that science begins then only when we look at the facts in a general point of view. This distinction is essential to the philosophy of science. The rope-dancer may, by his performances, suggest, to himself or to others, properties of the center of gravity; but this is so, because man has a tendency to speculate and to think of general truths, as well as a tendency to dance on a rope on special occasions, and to acquire skill in such dancing by practice. The rope-dancer does not dance by Induction, any more than the dancing dog does. To apply the terms Science and Induction to such cases, carries us into the regions of metaphor; as when we call birds of passage "wise meteorologists," or the bee "a natural chemist, who turns the flower-dust into honey." This is very well in poetry: but for our purposes we must avoid recognizing these cases as really belonging to the sciences of meteorology and chemistry,—as really cases of Induction. Induction for us is general propositions, contemplated as such, derived from particulars.

Science may result from experience and observation by Induction; but Induction is not therefore the same thing as experience and observation. Induction is experience or observation consciously looked at in a general form. This consciousness and generality are necessary parts of that knowledge which is science. And accordingly, on the other hand, science cannot result from mere Instinct, as distinguished from Reason; because Instinct by its nature is not conscious and general, but operates blindly and unconsciously in particular cases, the actor not seeing or thinking of the rule which he obeys.

12. A little further on I shall endeavour to show that not only a general thought, but a general word or phrase is a requisite element in Induction. This doctrine, of course, still more decidedly excludes the case of animals, and of mere practical knowledge in man. A burnt child dreads the fire; but reason must be unfolded, before the child learns to understand the words "fire will hurt you." The burnt dog never thus learns to understand words. And this difference points to an entirely different state of thought in the two cases: or rather, to a difference between a state of rational thought on the one hand, and of mere practical instinct on the other.

13. Besides this difference of speculative thought and practical instinct which thus are, as appears to me, confounded in Mr. Mill's philosophy, in such a way as tends to destroy all coherent views of human knowledge, there is another set of cases to which Mr. Mill applies the term Induction, and to which it appears to me to be altogether inapplicable. He employs it to describe the mode in which superstitious men, in ignorant ages, were led to the opinion that striking natural events presaged or accompanied calamities. Thus he says (i. 389), "The opinion so long prevalent that a comet or any other unusual appearance in the heavenly regions was the precursor of calamities to mankind, or at least to those who witnessed it; the belief in the oracles of Delphi and Dodona; the reliance on astrology, or on the weather-prophecies in almanacs; were doubtless inductions supposed to be grounded on experience;" and he speaks of these insufficient inductions being extinguished by the stronger inductions subsequently obtained by scientific inquiry. And in like manner, he says in another place (i. 367), "Let us now compare different predictions: the first, that eclipses will occur whenever one planet or satellite is so situated as to cast its shadow upon another: the second, that they will occur whenever some great calamity is impending over mankind."

14. Now I cannot see how anything but confusion can arise from applying the term Induction to superstitious fancies like those here mentioned. They are not imperfect truths, but entire falsehoods. Of that, Mr. Mill and I are agreed: how then can they exemplify the progress towards truth? They were not collected from the facts by seeking a law of their occurrence; but were suggested by an imagination of the anger of superior powers shown by such deviations from the ordinary course of nature. If we are to speak of inductions to any purpose, they must be such inductions as represent the facts, in some degree at least. It is not meant, I presume, that these opinions are in any degree true: to what purpose then are they adduced? If I were to hold that my dreams predict or conform to the motions of the stars or of the clouds, would this be an induction? It would be so, as much one as those here so denominated: yet what but confusion could arise from classing it among scientific truths? Mr. Mill himself has explained (ii. 389) the way in which such delusions as the prophecies of almanac-makers, and the like, obtain credence; namely, by the greater effect which the positive instances produce on ordinary minds in comparison with the negative, when the rule has once taken possession of their thoughts. And this being, as he says, the recognized explanation of such cases, why should we not leave them to their due place, and not confound and perplex the whole of our investigation by elevating them to the rank of "inductions"? The very condemnation of such opinions is that they are not at all inductive. When we have made any progress in our investigation of the nature of science, to attempt to drive us back to the wearisome discussion of such elementary points as these, is to make progress hopeless.

II. Induction or Description?—15. In the cases hitherto noticed, Mr. Mill extends the term Induction, as I think, too widely, and applies it to cases to which it is not rightly applicable. I have now to notice a case of an opposite kind, in which he does not apply it where I do, and condemns me for using it in such a case. I had spoken of Kepler's discovery of the Law, that the planets move round the sun in ellipses, as an example of Induction. The separate facts of any planet (Mars, for instance,) being in certain places at certain times, are all included in the general proposition which Kepler discovered, that Mars describes an ellipse of a certain form and position. This appears to me a very simple but a very distinct example of the operation of discovering general propositions; general, that is, with reference to particular facts; which operation Mr. Mill, as well as myself, says is Induction. But Mr. Mill denies this operation in this case to be Induction at all (i. 357). I should not have been prepared for this denial by the previous parts of Mr. Mill's book, for he had said just before (i. 350), "such facts as the magnitudes of the bodies of the solar system, their distances from each other, the figure of the earth and its rotation … are proved indirectly, by the aid of inductions founded on other facts which we can more easily reach." If the figure of the earth and its rotation are proved by Induction, it seems very strange, and is to me quite incomprehensible, how the figure of the earth's orbit and its revolution (and of course, of the figure of Mars's orbit and his revolution in like manner,) are not also proved by Induction. No, says Mr. Mill, Kepler, in putting together a number of places of the planet into one figure, only performed an act of description. "This descriptive operation," he adds (i. 359), "Mr. Whewell, by an aptly chosen expression, has termed Colligation of Facts." He goes on to commend my observations concerning this process, but says that, according to the old and received meaning of the term, it is not Induction at all.

16. Now I have already shown that Mr. Mill himself, a few pages earlier, had applied the term Induction to cases undistinguishable from this in any essential circumstance. And even in this case, he allows that Kepler did really perform an act of Induction (i. 358), "namely, in concluding that, because the observed places of Mars were correctly represented by points in an imaginary ellipse, therefore Mars would continue to revolve in that same ellipse; and even in concluding that the position of the planet during the time which had intervened between the two observations must have coincided with the intermediate points of the curve." Of course, in Kepler's Induction, of which I speak, I include all this; all this is included in speaking of the orbit of Mars: a continuous line, a periodical motion, are implied in the term orbit. I am unable to see what would remain of Kepler's discovery, if we take from it these conditions. It would not only not be an induction, but it would not be a description, for it would not recognize that Mars moved in an orbit. Are particular positions to be conceived as points in a curve, without thinking of the intermediate positions as belonging to the same curve? If so, there is no law at all, and the facts are not bound together by any intelligible tie.

 

In another place (ii. 209) Mr. Mill returns to his distinction of Description and Induction; but without throwing any additional light upon it, so far as I can see.

17. The only meaning which I can discover in this attempted distinction of Description and Induction is, that when particular facts are bound together by their relation in space, Mr. Mill calls the discovery of the connexion Description, but when they are connected by other general relations, as time, cause and the like, Mr. Mill terms the discovery of the connexion Induction. And this way of making a distinction, would fall in with the doctrine of other parts of Mr. Mill's book, in which he ascribes very peculiar attributes to space and its relations, in comparison with other Ideas, (as I should call them). But I cannot see any ground for this distinction, of connexion according to space and other connexions of facts.

To stand upon such a distinction, appears to me to be the way to miss the general laws of the formation of science. For example: The ancients discovered that the planets revolved in recurring periods, and thus connected the observations of their motions according to the Idea of Time. Kepler discovered that they revolved in ellipses, and thus connected the observations according to the Idea of Space. Newton discovered that they revolved in virtue of the Sun's attraction, and thus connected the motions according to the Idea of Force. The first and third of these discoveries are recognized on all hands as processes of Induction. Why is the second to be called by a different name? or what but confusion and perplexity can arise from refusing to class it with the other two? It is, you say, Description. But such Description is a kind of Induction, and must be spoken of as Induction, if we are to speak of Induction as the process by which Science is formed: for the three steps are all, the second in the same sense as the first and third, in co-ordination with them, steps in the formation of astronomical science.

18. But, says Mr. Mill (i. 363), "it is a fact surely that the planet does describe an ellipse, and a fact which we could see if we had adequate visual organs and a suitable position." To this I should reply: "Let it be so; and it is a fact, surely, that the planet does move periodically: it is a fact, surely, that the planet is attracted by the sun. Still, therefore, the asserted distinction fails to find a ground." Perhaps Mr. Mill would remind us that the elliptical form of the orbit is a fact which we could see if we had adequate visual organs and a suitable position: but that force is a thing which we cannot see. But this distinction also will not bear handling. Can we not see a tree blown down by a storm, or a rock blown up by gunpowder? Do we not here see force:—see it, that is, by its effects, the only way in which we need to see it in the case of a planet, for the purposes of our argument? Are not such operations of force, Facts which may be the objects of sense? and is not the operation of the sun's Force a Fact of the same kind, just as much as the elliptical form of orbit which results from the action? If the latter be "surely a Fact," the former is a Fact no less surely.

19. In truth, as I have repeatedly had occasion to remark, all attempts to frame an argument by the exclusive or emphatic appropriation of the term Fact to particular cases, are necessarily illusory and inconclusive. There is no definite and stable distinction between Facts and Theories; Facts and Laws; Facts and Inductions. Inductions, Laws, Theories, which are true, are Facts. Facts involve Inductions. It is a fact that the moon is attracted by the earth, just as much as it is a Fact that an apple falls from a tree. That the former fact is collected by a more distinct and conscious Induction, does not make it the less a Fact. That the orbit of Mars is a Fact—a true Description of the path—does not make it the less a case of Induction.

20. There is another argument which Mr. Mill employs in order to show that there is a difference between mere colligation which is description, and induction in the more proper sense of the term. He notices with commendation a remark which I had made (i. 364), that at different stages of the progress of science the facts had been successfully connected by means of very different conceptions, while yet the later conceptions have not contradicted, but included, so far as they were true, the earlier: thus the ancient Greek representation of the motions of the planets by means of epicycles and eccentrics, was to a certain degree of accuracy true, and is not negatived, though superseded, by the modern representation of the planets as describing ellipses round the sun. And he then reasons that this, which is thus true of Descriptions, cannot be true of Inductions. He says (i. 367), "Different descriptions therefore may be all true: but surely not different explanations." He then notices the various explanations of the motions of the planets—the ancient doctrine that they are moved by an inherent virtue; the Cartesian doctrine that they are moved by impulse and by vortices; the Newtonian doctrine that they are governed by a central force; and he adds, "Can it be said of these, as was said of the different descriptions, that they are all true as far as they go? Is it not true that one only can be true in any degree, and that the other two must be altogether false?"

21. And to this questioning, the history of science compels me to reply very distinctly and positively, in the way which Mr. Mill appears to think extravagant and absurd. I am obliged to say, Undoubtedly, all these explanations may be true and consistent with each other, and would be so if each had been followed out so as to show in what manner it could be made consistent with the facts. And this was, in reality, in a great measure done267. The doctrine that the heavenly bodies were moved by vortices was successively modified, so that it came to coincide in its results with the doctrine of an inverse-quadratic centripetal force, as I have remarked in the History268. When this point was reached, the vortex was merely a machinery, well or ill devised, for producing such a centripetal force, and therefore did not contradict the doctrine of a centripetal force. Newton himself does not appear to have been averse to explaining gravity by impulse. So little is it true that if the one theory be true the other must be false. The attempt to explain gravity by the impulse of streams of particles flowing through the universe in all directions, which I have mentioned in the Philosophy269 so far from being inconsistent with the Newtonian theory, that it is founded entirely upon it. And even with regard to the doctrine, that the heavenly bodies move by an inherent virtue; if this doctrine had been maintained in any such way that it was brought to agree with the facts, the inherent virtue must have had its laws determined; and then, it would have been found that the virtue had a reference to the central body; and so, the "inherent virtue" must have coincided in its effect with the Newtonian force; and then, the two explanations would agree, except so far as the word "inherent" was concerned. And if such a part of an earlier theory as this word inherent indicates, is found to be untenable, it is of course rejected in the transition to later and more exact theories, in Inductions of this kind, as well as in what Mr. Mill calls Descriptions. There is therefore still no validity discoverable in the distinction which Mr. Mill attempts to draw between "descriptions" like Kepler's law of elliptical orbits, and other examples of induction.

22. When Mr. Mill goes on to compare what he calls different predictions—the first, the true explanation of eclipses by the shadows which the planets and satellites cast upon one another, and the other, the belief that they will occur whenever some great calamity is impending over mankind, I must reply, as I have stated already, (Art. 17), that to class such superstitions as the last with cases of Induction, appears to me to confound all use of words, and to prevent, as far as it goes, all profitable exercise of thought. What possible advantage can result from comparing (as if they were alike) the relation of two descriptions of a phenomenon, each to a certain extent true, and therefore both consistent, with the relation of a scientific truth to a false and baseless superstition?

264[A System of Logic, Ratiocinative and Inductive, being a connected view of the Principles of Evidence, and of the Methods of Scientific Investigation. By John Stuart Mill.]
265These Remarks were published in 1849, under the title Of Induction, with especial reference to Mr. J. S. Mill's System of Logic.
266My references are throughout (except when otherwise expressed) to the volume and the page of Mr. Mill's first edition of his Logic.
267On this subject see an Essay On the Transformation of Hypotheses, given in the Appendix.
268B. vii. c. iii. sect. 3.
269B. iii. c. ix. art. 7.

Teised selle autori raamatud